
DR
AF

T
Infor Cloverleaf Application
Adaptor Web Services User
Guide

Release 2022.x

DRAFT

Copyright © 2022 Infor

Important Notices

The material contained in this publication (including any supplementary information) constitutes and contains
confidential and proprietary information of Infor.

By gaining access to the attached, you acknowledge and agree that the material (including any modification,
translation or adaptation of the material) and all copyright, trade secrets and all other right, title and interest
therein, are the sole property of Infor and that you shall not gain right, title or interest in the material (including
any modification, translation or adaptation of the material) by virtue of your review thereof other than the
non-exclusive right to use the material solely in connection with and the furtherance of your license and use
of software made available to your company from Infor pursuant to a separate agreement, the terms of which
separate agreement shall govern your use of this material and all supplemental related materials ("Purpose").

In addition, by accessing the enclosed material, you acknowledge and agree that you are required to maintain
such material in strict confidence and that your use of such material is limited to the Purpose described above.
Although Infor has taken due care to ensure that the material included in this publication is accurate and
complete, Infor cannot warrant that the information contained in this publication is complete, does not
contain typographical or other errors, or will meet your specific requirements. As such, Infor does not assume
and hereby disclaims all liability, consequential or otherwise, for any loss or damage to any person or entity
which is caused by or relates to errors or omissions in this publication (including any supplementary
information), whether such errors or omissions result from negligence, accident or any other cause.

Without limitation, U.S. export control laws and other applicable export and import laws govern your use of
this material and you will neither export or re-export, directly or indirectly, this material nor any related
materials or supplemental information in violation of such laws, or use such materials for any purpose
prohibited by such laws.

Trademark Acknowledgements

The word and design marks set forth herein are trademarks and/or registered trademarks of Infor and/or
related affiliates and subsidiaries. All rights reserved. All other company, product, trade or service names
referenced may be registered trademarks or trademarks of their respective owners.

Publication Information

Release: Infor Cloverleaf Application Adaptor-Web Services 2022.x
Publication Date: September 16, 2022
Document code: clfaaws_2022.x_claawsaawsolh__en-us

Disclaimer

This document reflects the direction Infor may take with regard to the specific product(s) described in this
document, all of which is subject to change by Infor in its sole discretion, with or without notice to you. This
document is not a commitment to you in any way and you should not rely on this document or any of its
content in making any decision. Infor is not committing to develop or deliver any specified enhancement,
upgrade, product or functionality, even if such is described in this document.

Contents

Contacting Infor..9

CAA-WS...10

Architecture and flow...12

Web Client working modes..13

API..15

Override fields..15

Field modes: SOAP/REST/Raw..16

CAA-WS USERDATA for getting information and setting overrides...17

USERDATA format..17

Provider inbound information...18

Client outbound overrides...20

Client inbound information...25

Provider outbound overrides..28

Open Java API...30

Local Binding...32

CAA-WS IDE properties GUI...34

CAA-Direct Retriever and CAA-Direct Sender..34

CAA-WS Client, CAA-WS RawClient and CAA-WS Server...35

ION Retriever..35

ION Retriever dialog box..36

ION Sender..38

ION Sender dialog box..39

Conduit...40

TLS Secured on the conduit...41

CAA-WS auto-creation of JKS for HTTPS...42

Creating a sample client..44

Infor Cloverleaf Application Adaptor Web Services User Guide | 3DRAFT

Contents

Creating a new conduit..45

Bus..45

Creating a sample server...46

Logical view..46

Creating an engine...47

Server IP addresses..47

Creating a RAW server..47

Placeholder REST server..48

Logical client items and their fields..48

Logical server items and their fields...57

Message validation check mode...62

Client overrides..63

Server overrides..66

Web Services consumer wizard...69

SOAP, REST and RAW basics..69

User interface...70

Building a SOAP Consumer..71

XSD WSDL tool..72

Selecting a WSDL file as input file..72

Selecting an XSD file as input file...73

WS-Client and WS-Server nodes..73

WS-Client conduit configuration...74

Conduit...75

WS-Client SOAP Consumer configuration...76

WS-Client REST Consumer configuration...77

WS-RawClient wizard flow...78

SPNEGO..80

Scheduler node..81

Web Services security...83

User interface...83

Testing..83

Certificate manager...84

Web services security use case..84

Usage scenario..85

Infor Cloverleaf Application Adaptor Web Services User Guide | 4DRAFT

Contents

Intended users..85

Basic flow..85

Alternate flow: Normal users...86

Web Service SOAP client: payload...86

Web Service SOAP client: message..86

Web Service RESTful client..86

Web Service Raw client..87

Web Service SOAP server: payload..87

Web Service SOAP server: message...87

Web Service RESTful server...88

Web Service Raw server...88

CAA-WS sample sites..89

REST..90

SOAP...91

SOAP Provider (MESSAGE mode)...91

Editing WS-Addressing...92

SOAP Provider (PAYLOAD mode)...92

SOAP Client...92

Asynchronous SOAP Client..93

Raw...93

Provider (Handler)..93

Raw Client...94

Asynchronous RAW Client..94

ws_more_samples...95

ws_adv_samples..95

Signing/Encryption..96

Understanding the CXF/WSS4J Options...97

FHIR...98

oauth2_sample..99

HL7 FHIR requirements and tools..102

Deploying Cloverleaf FHIR examples BOX..103

Cloverleaf BOX contents..104

Running examples..105

Running the FHIR patient create/update interface..106

Infor Cloverleaf Application Adaptor Web Services User Guide | 5DRAFT

Contents

Running the FHIR transaction bundle interface...108

Public FHIR test servers and this BOX...111

Updating FHIR schemas...111

Cloverleaf 6.2 translation Include operation..112

Using the Include operation..113

Creating an HTTP outbound web service client thread...114

CAA-WS Swagger..116

Raw Consumer configuration..116

OAuth2 client on the Conduit panel..117

XSD WSDL tool: Client...119

Usage scenario: Accessing a web service in the system...119

Client: Setting up single runs...120

Running XSD WSDL tool: Client version by command line..120

Running the XSD WSDL tool: Client by GUI...120

XSD WSDL tool: Server..122

Usage scenario: Creating a web service with the XSD WSDL tool..123

Server: Setting up single runs..123

Running the XSD WSDL tool: Server from command line..124

Running the XSD WSDL tool: Server from GUI..124

Portecle keystore management tool (third-party)...125

Java...125

Portecle open source GUI..125

Portecle installation...126

Launching Portecle..126

WS-Policy..127

Modifying the WSDL...128

Using the new WSDL..128

Providing valid usernames for server and select username for client..128

Java driver bug...129

Starting and testing threads..129

Policy files...130

Running fail test...130

jaxws:client and jaxws:server configuration properties..131

User properties...131

Infor Cloverleaf Application Adaptor Web Services User Guide | 6DRAFT

Contents

Callback class and crypto properties..132

Boolean WS-Security configuration tags..132

Non-boolean WS-Security configuration parameters..133

Encryption/signature class files..135

Callback classes..136

User interface for configuration and policy generation...137

Policy properties..138

USERDATA overrides..138

CAA-WS logging..140

Inbound/Outbound message logging...140

Cloverleaf message dump...140

CAA-WS internal logging..141

Output example..141

Enable Jetty access log..142

Updating CAA-WS 1.x sites to 2.0 and later...144

Migrating IHB threads to CAA-WS...146

Differences between IBMIME and CAA-WS messages...146

WSDL files...147

Server URLs...147

Configuration files..147

WS-Security..147

Server thread example...147

WSDL folder and server URLs..149

Removing Tcl procedures and changing routing values..149

Converting to CAA-WS server thread...150

Testing the changes...150

CAA-Direct...152

CAA-Direct architecture and flow...153

POP3/IMAP email retrieval usage..153

SMTP email sending usage..154

CAA-Direct Application Programming Interface (API)...155

CAA-Direct USERDATA for getting information and setting overrides...155

SMTP versus POP3 and IMAP...155

Infor Cloverleaf Application Adaptor Web Services User Guide | 7DRAFT

Contents

POP3/IMAP inbound information..156

SMTP outbound overrides...158

CAA-Direct IDE Properties GUI...162

Creating a sample sender..162

Sender object's sample site "GreenMailServer" test server...162

Sender's logical view..163

Additional sender configuration items...163

Creating a sample retriever...164

Retriever object's sample site GreenMailServer test server...164

Retriever's logical view..165

Additional retriever configuration items...165

Logical items and their fields...166

CAA-Direct usage scenario...173

Simple Message Sender...173

Message Sender with an attachment..174

Simple message retriever..174

Message retriever for an attachment..174

CAA-Direct sample sites..176

SMTP...176

SMTPS...178

POP3...179

POP3S...180

IMAPS..181

CAA-Direct Portecle Keystore Management tool (third-party)..182

CAA-Direct logging...184

Mail server conversation logging...184

Cloverleaf message dump...186

CAA-Direct internal logging...187

CAA-Direct known issues...189

Log files and troubleshooting..190

Frequently asked questions..191

Index...193

Infor Cloverleaf Application Adaptor Web Services User Guide | 8DRAFT

Contents

Contacting Infor

If you have questions about Infor products, go to Infor Concierge at https://concierge.infor.com/ and create
a support incident.

The latest documentation is available from docs.infor.com or from the Infor Support Portal. To access
documentation on the Infor Support Portal, select Search > Browse Documentation. We recommend that
you check this portal periodically for updated documentation.

If you have comments about Infor documentation, contact documentation@infor.com.

Infor Cloverleaf Application Adaptor Web Services User Guide | 9DRAFT

Contacting Infor

https://concierge.infor.com/
https://docs.infor.com/
mailto:documentation@infor.com

CAA-WS

Cloverleaf Application Adapter Web Services (CAA-WS) is an extension to the core system functionality.

The Generic Java driver enables the engine to associate many threads with the Java protocol. This provides
a way for the engine to communicate, by a public supported API, with Java applications running in one or
more JVMs.

This foundation provides a platform for users to build custom Java applications that extend the core system
engine.

CAA-WS, built using the Java driver, provides support for the prevailing web services paradigms, including:

• SOAP, RESTful, and optionally raw HTTP.
• Client and server.
• Synchronous and asynchronous.
• Advanced topics such as WS-* (for example, WS Security, SAML, mtom w/ attachments, and WS-addressing).

Customization points are for both power users and normal users:

• Normal users are users who follow samples and configuration guidelines. They also apply business logic
in typical system application development methodologies, using Tcl API in UPoCs to use existing system
functionality.

• Power users are those who must customize processing at the web services protocol level. They also deal
with advanced web services topics, such as WS security, policy, and so on. These users are comfortable
programming in both Tcl and Java. They have an understanding of how certain open source Java web
services technology works. For example, CXF.

• Tcl UPoCs can be used to process WS requests and build a response.
• Message body is passed as a string to/from Tcl UPoCs.
• Metadata is passed as a keyed list to/from Tcl.
• Custom adapter development can be used for power users.

Provided with CAA-WS are:

• GUI tools that can assist with deployment configuration for CXF.
• Tutorials and sample sites.
• Help for existing users migrating from the IHB application to the WS adapter.
• Sample site that contains various examples of client and server applications. These are the starting point

for learning how CAA-WS works. You can then modify the samples to create your own applications.

Infor Cloverleaf Application Adaptor Web Services User Guide | 10DRAFT

CAA-WS

Knowledge levels

For those with a high level knowledge of CXF, these topics help you understand what beans, clients, and
endpoints are created. Then, you can configure your own XML files.

For those with an intermediate understanding of CXF, you can use CAA-WS to get your configuration files
started. Then, refer to the CXF documentation to configure any interceptors or handlers to add by directly
editing the XML.

For those starting with CXF, stay with CAA-WS until you require CXF functionality that this tool does not
support. Then, you can study the CXF documentation to modify your XML configuration files.

Infor Cloverleaf Application Adaptor Web Services User Guide | 11DRAFT

CAA-WS

Architecture and flow

The CAA-WS is a Java Driver application that leverages the Apache Software Foundation’s open source CXF
web service framework.

Web service server usage

The web service server interacts with an external client.

• CXF comes with an embedded web server, jetty.
• This is an example of how a web service request is processed. This uses the Java Driver thread to route,

based on TrxID, to two TCP threads where the Tcl UPoCs apply the business logic.
This logic also resides in an inbound UPoC within the Java Driver thread without requiring additional
TCP threads.

• CXF is based on JAX-WS, a standard Java web services stack. This has the concept of a Provider, or a Java
class, that you write and plug into CXF to handle specific requests.

• CAA-WS bundles one or more Providers that do specific tasks. For example, getting the payload of the
request and converting them into keyed lists. Then, putting them in USERDATA for subsequent Tcl processing
down the message flow, and so on.

• To plug-in providers, specify in the CXF configuration file the Provider Java class. In addition, specify
other parameters such as version of SOAP, URL of request, and so on.
The configuration GUI assists in creating the correct entries in the CXF configuration file. The CXF
configuration file can also be manually modified using Spring configuration conventions.

• You can also develop your own custom Provider. The JAX-WS is an open API. The source code for the
CAA-WS Providers is available as samples. The CXF configuration is used to plug in the custom Provider.

Web service client usage

With the web service client:

• CXF is used for its client functionality, but the embedded web server, jetty, is not involved.
• CXF uses the concept of a "dispatch", or Java class, that you write and plug into CXF to make requests

as a client. The CAA-WS bundles one or more dispatches that have specific tasks. For example, creating
the payload of the actual web service request from content in keyed lists in USERDATA. Such keyed lists
are from upstream business logic in Tcl.

• You can also develop your own custom dispatch. The JAX-WS is an open API. The source code for the
CAA-WS Dispatches is available as samples.

• For example, a web service request can be created using an external TCP thread. This generates the keyed
lists, where the Tcl UPoCs apply the business logic. The logic can also reside in an outbound UPoC within
the Java Driver thread without requiring additional TCP threads.

Infor Cloverleaf Application Adaptor Web Services User Guide | 12DRAFT

Architecture and flow

To plug in dispatches, specify in the CXF configuration file the dispatch Java class. In addition, specify other
parameters such as SOAP or RESTful, version of SOAP, URL of request, and so on.

The configuration GUI assists in creating the correct entries in the CXF configuration file. The CXF configuration
file can also be manually modified, using Spring configuration conventions.

Web Client working modes
Working modes of web Clients are:

• Synchronous web Client as outbound
• Asynchronous web Client as outbound
• Scheduled web Client as inbound

Synchronous web Client as outbound

This is the first mode that is available to CAA-WS clients. The working flow of this mode matches the supporting
Cloverleaf work flow.

Features include:

• Client requests are message-driven.
• Outbound message reply order is maintained. The next request is sent only when the former request

response arrives.
• The request and its response have an internal link in the engine. The outbound await-replies option

counts the correct time-out for a pair of "request and response".
• Send OK and Send Fail procs are called according to whether an expected response comes, or not.
• The MSI Outbound queue reflects the exact number of messages that have not been sent.
• The throughput is relatively small compared to the asynchronous mode.

Asynchronous web Client as outbound

Asynchronous clients are also message-driven.

Differences from synchronous clients include:

• Outbound message replies do not return to the engine in order. They are "first come, first served" by the
engine.

• Unless the driver control flags are copied from requests to replies, the engine does not know which
request a reply is associated with after the transaction is turned over by the protocol code.
• Inside the protocol code:

A reply has a link in code logic to its trigger request. Because this is not a common user point of
customization, TCL access is not supported. Some Java customization is possible. For details, see
Open Java API on page 30.

• Outside the protocol code:

Infor Cloverleaf Application Adaptor Web Services User Guide | 13DRAFT

Architecture and flow

When an asynchronous client is in use, Send OK and Send Fail procs can only check if a message is
acceptable to the protocol driver. This gets the service run planned in the thread pool. No response
is available on points.
Inbound reply TPS:
The engine handles inbound response messages to KILL a message. This triggers time-out handling.
The engine cannot resend any requests because there is no request-response link from the protocol
driver. Similarly, time-out counting of await replies is incorrect in regards to a logically-linked
request-response pair.

• The MSI outbound queue only reflects messages not yet scheduled by the protocol driver. In driver
management, the queue is not yet visible to users, but there are copies in the Recovery database. In case
of an unexpected blackout, the messages can be resent to the protocol driver.

• The throughput is mostly unhindered.

Scheduled web Client as inbound

A web client can also work as a web hook to retrieve online resources in loops.

• This mode is time-driven instead of message-driven.
• For HTTP actions, there is no requirement for payload. The client configuration is sufficient.
• For HTTP actions that require payload, you can define the JaxWSMetaRequest and RawWSMetaRequest bean

classes in the client configuration to provide the necessary information. For details, see Open Java API
on page 30.

Infor Cloverleaf Application Adaptor Web Services User Guide | 14DRAFT

Architecture and flow

API

Application Programming Interface (API) types include:

• Tcl user interface
This is intended for implementers using a Tcl UPoC to process messages coming into the system from
the CAA-WS.

• CXF provider/dispatcher (JAX-WS) API
This is for users who require custom behavior other than the CAA-WS bundled providers/dispatchers.
The source code for the CAA-WS providers/dispatchers is part of the distribution as samples.
Note: If you develop and configure with CXF custom Providers or Dispatchers, then the Tcl user interface
might not apply. This is because that interface is based on the CAA-WS bundled Providers/Dispatchers.

• CXF configuration interface
This is an XML configuration file that determines the CXF behavior. Users can edit the file using the GUI
tool or manually editing the file.

Override fields
For override fields, provide those fields for which the default value is incorrect. All others can be left blank,
so defaults are used.

For example, to override only the messageId in WS-Addressing, there is no requirement to supply other
WS-Addressing fields.

Put the main wsa field with the messageId that is nested within it. There is no requirement to supply action or
any others, unless required.

For example:

{httpRequestHeaders {{Accept */*} {Cache-Control no-cache} {connection keep-alive} {Content-
Length 1392}
{content-type {application/soap+xml; charset=UTF-8}} {Host localhost:9003} {Pragma no-cache}
{User-Agent {Apache CXF 2.4.2}}}} {httpRequestInfo {{method POST} {requestURL http://local
host:9003/xdsregistryb}
{path /xdsregistryb}}}

This example shows:

• The format of the list.

Infor Cloverleaf Application Adaptor Web Services User Guide | 15DRAFT

API

• The nested structure.
• How the USERDATA works for a Provider and a Client using the request side.
• First-level keys in the list are httpRequestHeaders and httpRequestInfo.
• Second-level keys are:

• Accept

• Cache-Control

• connection

• Content-Length

• content-type

• Host

• Pragma

• User-Agent

• method

• requestURL

• path

Inbound messages (Provider) include:

• httpRequestHeaders is a list of the HTTP request headers.
• httpRequestInfo

The key values are various bits of information about the request:
• method shows it was an HTTP POST.
• requestURL shows the URL being requested.
• path component of the URL is extracted for simplicity.

Outbound messages (Client) include:

• httpRequestHeaders overrides the outbound HTTP request headers that are sent by the system.
• httpRequestInfo

The key values are various overrides:
• method assures the type to be a POST.
• requestURL is an override. When this is passed, the default URL is overridden.
• path is a special case:

If the requestURL override is present, then path is ignored as an override.
If there is no requestURL, then the path appends, not overrides, to the default request URL path.

Field modes: SOAP/REST/Raw
These different modes have commonalities, for example, Providers put HTTP request headers in their
information and can override HTTP response headers.

Other items are specific to only one or two modes, for example, WS-Addressing is only applicable to SOAP
messages.

Infor Cloverleaf Application Adaptor Web Services User Guide | 16DRAFT

API

If a field is nested within another, then the mode is inherited from the parent unless otherwise specified.

These topics show the modes for which a given field is applicable:

• Provider inbound information
• Client outbound overrides
• Client inbound information
• Provider outbound overrides

CAA-WS USERDATA for getting information and setting
overrides
The USERDATA field in the system messages sent to/from the CAA-WS both provides information and permits
the setting of overrides.

• For basic web services, ignore this field if the default settings provide what is required.
• More complex web services processing, for example, soap fault handling, require one of these:

• Reading the USERDATA on an inbound message and implementing different handling logic in UPoC
code, depending on the contents.

• Writing to the USERDATA on an outbound message to set specific HTTP header fields, a specific response
code, overriding default WS-Addressing fields, and so on.

For example, USERDATA is used as information and overrides in this context.

The outside client calls the system Provider which processes the message and sends it to the system client
which then calls the outside Provider.

Note: A server is often called a web services Provider, or Provider for short.

The response from the outside Provider is then passed back through the system to the outside client. This
shows the USERDATA information that a Provider thread attaches to a system message. This is similar to the
override USERDATA content that you can send to a client thread.

The reverse is where the response message from the client thread has USERDATA information that is attached
to the system message. This is similar to the override USERDATA content that you can send to the Provider
thread, instructing it how to reply to the outside client.

USERDATA format
The USERDATA field is used as a Tcl keyed list. A keyed list is a string obeying certain rules, where the list is
made up of name/value pair entries.

In CAA-WS, a value is a basic string value, or is another keyed list, also known as nested keyed list. The nesting
typically does not go beyond three levels deep.

Infor Cloverleaf Application Adaptor Web Services User Guide | 17DRAFT

API

Most data is at the second level. The first level is general categories.

Inbound messages are processed by the CAA-WS where various message metadata get deposited into the
USERDATA field.

Outbound messages are processed by the CAA-WS which takes any information in the USERDATA field and uses
it to override default behaviors.

Content from an inbound message to a Provider thread is the same format as the override content that is
provided to an outbound client thread. The Provider thread receives a web service request. The client thread
creates the web service request.

The same is true for the inbound USERDATA coming from a client thread. This receives a web service response.
It can be used without modification to override settings on the outbound message from a Provider thread.
This creates a web service response.

Provider inbound information
In the message inbound from the Provider thread, the USERDATA contains information about the request from
the outside Client.

This table shows the information request parameters from outside clients.

A "*" in the list is the wildcard. This represents any other key names not listed in the same location of the
map.

The "-" prefix in the list represents a sublayer. This indicates that the key following the "-" belongs to a map
on a sub-level under the nearest above key with one less "-" prefixed.

ModesDescriptionField (key)

ALLThis contains a map of all the HTTP request headers. If the
HTTP request forwarding option is set, then HTTP headers
are moved to orgHttpRequestHeaders, unless the header is
listed in "HTTP forward headers".

httpRequestHeaders

ALLHTTP request headers are named by the Client. These are
items such as Content-Length, Content-Type, User-Agent,
and Host. They can also contain any arbitrary value sent by
the Client. The header name is the key and the header value
is the value in the map. For multivalued headers, if they are
represented as multiple lines in a request, then that header
key can repeat the result map. However, starting from the
second time, the header name has a suffix similar to ::{dig
it}.

-*

ALLThis contains a map of fields giving further information about
the HTTP request. If the HTTP request forwarding option
is set, then this information is moved to orgHttpRequestInf
o.

httpRequestInfo

The HTTP method. For example, GET, POST, PUT, and so on.-method

Infor Cloverleaf Application Adaptor Web Services User Guide | 18DRAFT

API

ModesDescriptionField (key)

Full URL excluding the query string. For example, if a request
came in to http://localhost:9005/raw/customer?id=123,
then the resulting requestURL is http://localhost:9005/raw/
customer.

-requestURL

The portion of the URL after the port. In the requestURL ex-
ample, this is "/raw/customer."

-path

RawIn Raw mode, the path is further broken down into the por-
tion after the first section. Typically, in a URL such as this, r
aw would be considered the web app. It is useful to know
what the path is after the web app. In the requestURL exam-
ple, pathInfo would be customer.

- pathInfo

The query string portion of a URL. In the requestURL example
this is "id=123."

-query

SOAPThis is true/false. This indicates that the request is a one way
request and no response should be sent. CAA-WS automati-
cally sends back an HTTP 202 response to the Client.

-oneWay

The IP address from which the request came.-clientip

The port from which the request came.-clientport

SOAP
REST

If HTTP Basic, Digest, or Negotiate Authentication was used
to authenticate this request, then this map key is present.
Raw mode can handle these types of authentication but the
information is not present in USERDATA.

-authorization

The user name used to authenticate.- - user

The type of authentication used–Basic, Digest, or Negotiate.- - type

SOAP
REST

This is a map of all attachments in the message. Raw mode
can accept attachments but the entire message, including
attachments, is sent to the Handler. Attachments are not
broken out separately.

attachments

Each attachment is itself a nested map of its components
where the key is the identifier for the attachment. If the at-
tachment already has a designated ID, for example, a Con-
tent-ID header, then that ID is used. If there is no existing ID,
then one is automatically generated as (“IB” + unique num-
ber).

* (identifier)

A boolean true/false value to indicate whether the attach-
ment is XOP.

- - xop

A further nested map containing the headers for the attach-
ment.

- - headers

Infor Cloverleaf Application Adaptor Web Services User Guide | 19DRAFT

API

ModesDescriptionField (key)

The header names are the keys in this map, with the header
values being the values in the map. This is similar to httpRe
questHeaders.

- - *

A base64 encoded string containing the attachment’s con-
tent. This is used when the cloverleaf-attachment-dir field
is missing or blank in the configuration XML.

- - content

SOAPWS-Addressing information. Fields are only populated when
they are not null on the inbound message.

wsa

This required element, whose content is of type xs:anyURI,
conveys the value of the [action] property.

- action

This optional element, of type wsa:EndpointReferenceType,
provides the value for the [fault endpoint] property.

- faultTo

This optional element, of type wsa:EndpointReferenceType,
provides the value for the [source endpoint] property.

- from

This optional element, whose content is of type xs:anyURI,
conveys the [message ID] property.

- messageId

This optional, repeating, element information item con-
tributes one abstract [relationship] property value, in the
form of an (IRI, IRI) pair. The content of this element, of type
xs:anyURI, conveys the [message ID] of the related message.

- relatesTo

This optional element, of type wsa:EndpointReferenceType,
provides the value for the [reply endpoint] property. If this
element is not present, then the value of the [address]
property of the [reply endpoint] EPR is http://www.w3.org/
2005/08/addressing/anonymous.

- replyTo

This optional element, whose content is of type xs:anyURI,
provides the value for the [destination] property. If this ele-
ment is not present, then the value of the [destination]
property is http://www.w3.org/2005/08/addressing/anonymous
.

- to

Client outbound overrides
In the outbound message from the Client thread, USERDATA that is passed in overrides default behaviors and
values. These USERDATA values are almost all exactly the same as the Provider inbound information.

This table shows information on client outbound overrides.

A "*" in the list is the wildcard. This represents any other key names not listed in the same location of the
map.

Infor Cloverleaf Application Adaptor Web Services User Guide | 20DRAFT

API

The "-" prefix in the list represents a sublayer. This indicates that the key following the "-" belongs to a map
on a sub-level under the nearest above key with one less "-" prefixed.

ModesDescriptionField (key)

ALLThis contains a map of all the HTTP request headershttpRequestHeaders

HTTP request headers can sometimes have arbitrary names,
and others have well-known special meanings. These are
items such as Content-Length, Content-Type, User-Agent,
and Host. The header name is the key and the header value
is the value in the map. Case does not matter. 3.
Notes:
• Do not attempt to override the SOAPAction header. This

must be completed under httpRequestInfo > soa-
pAction.

• Setting Content-Type here fails when sending attach-
ments, as CXF controls the Content-Type header in that
case. Otherwise, it should work.

• Use a comma to combine multivalued HTTP headers into
one key-value pair. You can also have multiple pairs,
whose keys have a suffix after the second occurrence.
For example, ::{digital}.

-*

ALLThis contains a map of fields permitting further overrides re-
garding the HTTP request.

httpRequestInfo

This is the HTTP method. For example, GET, POST, PUT, and
so on. Typically, POST is the default.

- method

Full URL excluding the query string. For example, to change
the request to http://localhost:9005/raw/customer?id=123
, the resulting requestURL is http://localhost:9005/raw/cus
tomer. In this example, exclude the query string here.

- requestURL

The portion of the URL after the port. In the requestURL exam-
ple, this is /raw/customer. If a requestURL is provided, then
this field is ignored. If no requestURL is provided, then the
path appends to the default request URL path.

- path

N/AAlthough this field is present in the information from a
Provider, it is ignored by the Client thread. This cannot be
used as an override.

- pathInfo

The query string portion of a URL. In the requestURL example,
this is "id=123."

- query

Infor Cloverleaf Application Adaptor Web Services User Guide | 21DRAFT

API

ModesDescriptionField (key)

SOAPThis property sets the SOAPAction HTTP header in SOAP 1.1
messages, and the action attribute of the Content-Type
header in SOAP 1.2 message. If WS-Addressing is enabled,
then this also sets the Action attribute there, regardless of
SOAP version.
This is a special override, so it should not be used with HTTP
header overrides when using a SOAP Client. This is because
CXF performs special operations, such as WS-Addressing/WS-
Policy handling, with regard to the soapAction setting. It must
be set here and not as an HTTP header override.
This is only true when using the SOAP Client. If a SOAP mes-
sage is sent using a Raw Client or the REST Client, then man-
ually set the SOAPAction header by an HTTP Header override.
This applies to the SOAP 1.1 or the Content-Type header’s
action attribute for SOAP 1.2

- soapAction

SOAPTrue/False. This indicates that the request is a one way re-
quest and no response should be sent. This field is required
when communicating with a one way service Provider. Oth-
erwise, the CXF Client expects a response and catches excep-
tions when the HTTP 202 comes back from the Provider. No
Cloverleaf reply message is created in this case.

- oneWay

A map of TLS (SSL) overrides. Currently there is only the cer
tAlias override.

- tls

Infor Cloverleaf Application Adaptor Web Services User Guide | 22DRAFT

API

ModesDescriptionField (key)

The alias of the certificate in the keystore to present that
identifies the Client when the TLS connection is being estab-
lished. This causes an exception when this key is present and
TLS is not configured on the Client.
Note: There are a few issues to be aware of when using this
key:
• This updates the Conduit object. Any subsequent re-

quests to that Conduit use the same certAlias, even
when the key is not sent in those subsequent requests.
This is contrary to the vast majority of overrides which
apply only to that single message.

• The Conduit caches the SSL session by default. Subse-
quent requests within the default time limit use the exist-
ing session. To ensure that different certAlias values
always use their own SSL session, the SSL cache time-
out must be set to “0." This indicates it does not cache
SSL sessions. This affects performance as it requires a
new SSL session to be created for every message.

Note: Using this mechanism for authorization instead of au-
thentication is not recommended. Use HTTP Basic, Digest/Ne-
gotiate, Authentication for authorization purposes, or WS-
Security’s UsernameToken.
For debugging an SSL or TLS handshake that is not working,
go to the process’s Java driver configuration and set this user-
defined property: javax.net.debug=ssl:handshake
This logs many SSL handshake information that is useful for
debugging SSL or TLS, but can rapidly overwhelm the log file
when used in production.

- - certAlias

If HTTP Basic or Digest Authentication is enabled, then the
keys within this map override the configurations on a per-
transaction basis. It is acceptable to override as much as re-
quired, as fields not specified here use their configured values.
If not already enabled, then these keys are used to set up
HTTP Authentication.

- authorization

The user name used to authenticate.- - user

The password belonging to the user.- - password

The authentication type is Basic, Digest, or Negotiate. If not
specified, then the default is Basic.

- - type

Map of all attachments to be sent. Raw mode can send attach-
ments, but the entire message, including attachments, is sent
as the message body. Attachments are not broken out sepa-
rately.

attachments

Infor Cloverleaf Application Adaptor Web Services User Guide | 23DRAFT

API

ModesDescriptionField (key)

Each attachment is itself a nested map of its components
where the key is the identifier for the attachment. The value
that is specified is used as the attachment ID. This is set as
the Content-ID header.

- * (identifier)

SOAP
REST

A boolean true/false value to indicate whether the attach-
ment is to be sent using XOP.

- - xop

A further nested map containing the headers to override for
the attachment.

- - headers

The header names are the keys in this map, with the header
values being the values in the map. This is similar to httpReq
uestHeaders.
Content-Type header defaults to application/oct
et-stream when no value is provided.

- - - *

Base64 encodes your attachment content to be sent here.
This field or the contentFile field is required.

- - content

File name for a file containing the attachment content. This
is used for large attachments to improve performance versus
the costs of base64 encoding. The file name is a relative path
to the Cloverleaf process directory or an absolute path. This
field or content field is required.

- - contentFile

SOAPWS-Addressing information. Descriptions here are the override
possibilities. All values are already set based on defaults or
other configurations so the necessity to override these should
be rare.

wsa

The Action field should be overridden by setting httpReques
tInfo->soapAction, which sets this and sets the SOAP Action
appropriately for SOAP 1.1 or 1.2. If you require it, then this
property can be overridden here.

- action

This is for making an asynchronous request. You can provide
an endpoint here. The recommended approach is to create
a CXF HTTP Conduit containing a Client element. Set Decoup
ledEndpoint to the URL to listen on for asynchronous respons-
es. Setting DecoupledEndpoint in the configuration XML auto-
matically sets this replyTo header to that DecoupledEndpoint
value. As with the Action header, you can also override this
one here when necessary.

- replyTo

This is automatically set to the requestURL you are calling,
but can be overridden here.

- to

Infor Cloverleaf Application Adaptor Web Services User Guide | 24DRAFT

API

ModesDescriptionField (key)

If not overridden, then this is set with a generated unique
value. You can override this when you are making a pass-
through type application with the value received by the
Provider thread.

- messageId

See definition, no specialization here.- from

See definition, no specialization here.- faultTo

This option overrides the key when any of the other listed
keys must be understood by the server. The value for this is
a list with a comma. For example: to,action

-mustUnderstand

ALLIf the settings for this Client tell it that the TrxID on the re-
sponse should come from USERDATA, then this field is re-
quired. The response TrxID is then set as the field value.

trxid

SOAPThere are many possible child keys here and the operations
can be complex. See USERDATA overrides.

wss

RAWThis contains a map of all HTTP request cookies.cookies

The cookies to be added to the requests in key-value pairs.
For multivalued cookies, a key can be used multiple times
with each key having a different suffix. For example, :: (digit).

-*

RAWThis is the information for the client to compose the request,
in style of a form.

form

This contains the fixed inputs entries for the form.-dataMap

Inputs name-value entries for the form. This is similar to coo
kies and HTTP headers. If a name must be listed more than
once, then it must have a suffix. For example, :: (digit).

--*

Form requests do not have a HTTP payload or the payload
occupied by the form. This key directs the client where
Cloverleaf messages are placed inside a form request. When
this key is set, the form is appended with a new input. For
example, <value of this key>=<Cloverleaf messag
e>.

-payloadKey

Client inbound information
In the message inbound from the Client thread, the USERDATA contains information about the response from
the outside Provider.

This table shows the information response parameters from outside providers.

Infor Cloverleaf Application Adaptor Web Services User Guide | 25DRAFT

API

A "*" in the list is the wildcard. This represents any other key names not listed in the same location of the
map.

The "-" prefix in the list represents a sublayer. This indicates that the key following the "-" belongs to a map
on a sub-level under the nearest above key with one less "-" prefixed.

ModesDescriptionField (key)

SOAPThis field only shows up if the response was a SOAP fault.
The message body contains the SOAP fault XML. This field
is a place to check if a fault has happened before process-
ing the message body.

fault

Contains the Fault Actor field- faultActor

Code is a QName field. Here it is represented as a map
with the attributes of the QName inside.

- code

Namespace of the code QName- - namespaceURI

Local part name of the code QName- - localPart

Explanation of the fault.- faultString

SOAP 1.2 only- faultNode

SOAP 1.2 only- faultReasonText

SOAP 1.2 only- faultRole

SOAP 1.2 only. First tier of sub-codes.- subCode

SOAP 1.2 only. Second tier of sub-codes and beyond. La-
beled as subCode_X, where {X|1..infinity}.

- subCode_1

ALLInteger value of the HTTP response code. 200 means
success in most situations.

httpResponseCode

This contains a map of all the HTTP response headers.httpResponseHeaders

HTTP response headers are named by the Provider. These
are items such as Content-Length, Content-Type, and
Server, but can contain any arbitrary value sent by the
Server. The header name is the key and the header value
is the value in the map. For multivalued headers, if they
are represented as multiple lines in a request, then that
header key can repeat the result map. Starting from the
second time, the header name contains a suffix. For ex-
ample, ::{digit}.

- *

Map of all attachments in the message. Raw mode can
accept attachments but the entire message including
attachments, is sent to the Handler. Attachments are not
broken out separately.

attachments

Infor Cloverleaf Application Adaptor Web Services User Guide | 26DRAFT

API

ModesDescriptionField (key)

Each attachment is itself a nested map of its components
where the key is the identifier for the attachment. If the
attachment already has a designated ID such as a Con-
tent-ID header, then that ID is used here. If there is no
existing ID, then one is automatically generated as (“IB”
+ unique number).

- * (identifier)

SOAP
REST

A boolean true/false value to indicate if the attachment
was XOP.

- - xop

A further nested map containing the headers for the at-
tachment.

- - headers

The header names are the keys in this map, with the
header values being the values in the map. Similar to ht
tpResponseHeaders.

- - - *

A base64-encoded string containing the attachment’s
content. This is used if the cloverleaf-attachment-dir
field is missing or blank in the configuration XML.

- - content

If the cloverleaf-attachment-dir field exists in the con-
figuration XML, then this field is sent instead of the
base64-encoded content field.
This field contains the file name that holds the attach-
ment content. This is relative to the cloverleaf-attachm
ent-dir that is specified in configuration.
It is expected that the Cloverleaf application deletes this
file after it has been used. This is useful to improve per-
formance relative to base64-encoding in the case of large
attachments.
If the cloverleaf-attachment-dir is specified as a relative
path, then the contentFile USERDATA value has the cor-
rect file name but an incorrect path. This is due to a bug
in GJD’s handling of Java’s working directory.
You can do one of these:
• Use the file name relative to the cloverleaf-attach

ment-dir under the process directory, ignoring the
path component.
or

• Specify an absolute path for the cloverleaf-attach
ment-dir in which case the full path and file name
are correct.

- - contentFile

Infor Cloverleaf Application Adaptor Web Services User Guide | 27DRAFT

API

ModesDescriptionField (key)

SOAPWS-Addressing information.
Fields are only populated if they are not null on the in-
bound message. This is the same as Provider inbound,
except there is no replyTo header here.

wsa

This required element, whose content is of type xs:anyU
RI, conveys the value of the [action] property.

- action

This optional element, of type wsa:EndpointReferenceTy
pe, provides the value for the [fault endpoint] property.

- faultTo

This optional element, of type wsa:EndpointReferenceTy
pe, provides the value for the [source endpoint] property.

- from

This optional element, whose content is of type xs:anyURI,
conveys the [message id] property.

- messageId

This optional, repeating, element information item con-
tributes one abstract [relationship] property value, in
the form of an (IRI, IRI) pair. The content of this element,
of type xs:anyURI, conveys the [message id] of the related
message.

- relatesTo

This optional element, whose content is of type xs:anyU
RI, provides the value for the [destination] property. If
this element is not present, then message id value of the
[destination] property is http://www.w3.org/2005/08/
addressing/anonymous.

- to

Provider outbound overrides
In the outbound message from the Provider thread, USERDATA that is passed in overrides default behaviors
and values. These USERDATA values are almost all exactly the same as the Client Inbound Information.

This table shows provider outbound override information.

A "*" in the list is the wildcard. This represents any other key names not listed in the same location of the
map.

The "-" prefix in the list represents a sublayer. This indicates that the key following the "-" belongs to a map
on a sub-level under the nearest above key with one less "-" prefixed.

ModesDescriptionField (key)

ALLInteger value of the HTTP response code. 200 means suc-
cess in most situations.

httpResponseCode

ALLThis contains a map of all the HTTP response headers.httpResponseHeaders

Infor Cloverleaf Application Adaptor Web Services User Guide | 28DRAFT

API

ModesDescriptionField (key)

HTTP response headers can sometimes have arbitrary
names, and others have well-known special meanings.
These are items such as Content-Length, Content-Type,
and Server. The header name is the key and the header
value is the value in the map. Case does not matter.
Notes:
• Setting Content-Type here fails when sending attach-

ments, as CXF controls the Content-Type header in
that instance. Otherwise, it should work.

• Setting Content-Length is not advisable unless you
require working with another system that has an issue
or something you are trying to work around.

• You can combine multivalued HTTP headers into one
key-value pair by using a comma. You can also have
multiple pairs, whose keys have a suffix after the sec-
ond occurrence. For example, ::{digital}.

- *

SOAP
REST

This is a map of all attachments to be sent. Raw mode can
send attachments but the entire message, including attach-
ments, must be sent as the message body. Attachments
are not broken out separately.

attachments

Each attachment is itself a nested map of its components
where the key is the identifier for the attachment. The value
you specify here is used as the ID for the attachment and
is set as the Content-ID header.

- * (identifier)

A boolean true/false value to indicate if the attachment
is to be sent using XOP.

- - xop

A further nested map containing the headers to override
for the attachment.

- - headers

The header names are the keys in this map, with the
header values being the values in the map. This is similar
to httpRequestHeaders.
Content-Type header defaults to "application/octet-
stream" if no value is provided here.

- - - *

Base64-encode your attachment content to be sent here.
This field or contentFile field is required.

- - content

File name for a file containing the attachment content. This
is used for large attachments to improve performance
versus the costs of base64 encoding. The file name should
be a relative path to the Cloverleaf process directory or an
absolute path. This field or the content field is required.

- - contentFile

Infor Cloverleaf Application Adaptor Web Services User Guide | 29DRAFT

API

ModesDescriptionField (key)

WS-Addressing information.
Descriptions here are the override possibilities. All values
are already set based on defaults or other configurations,
so the necessity to override these should be rare.

wsa

In general, this is automatically set from the WSDL, but can
be overridden here, if necessary.

- action

This is not used in the normal Request/Response MEP. If
the response is expecting a further message to be sent to
the Provider, then this is where you specify the message's
destination URL.

- replyTo

This is automatically set to the requestURL you are calling,
but can be overridden here.

- to

If not overridden, then this is set with a generated unique
value. You can override this if you are making a pass-
through type application with the value received by the
client thread.

- messageId

This optional element, of type wsa:EndpointReferenceType,
provides the value for the [source endpoint] property.

- from

This optional element, of type wsa:EndpointReferenceType,
provides the value for the [fault endpoint] property.

- faultTo

Automatically populated with the message ID from the in-
bound request to which this response is replying. This
would rarely require overriding, except for the Client that
can override it for a pass-through application. Even for a
pass-through app, this should require overriding on the
Provider.

- relatesTo

SOAPThere are many possible child keys here and the operations
can be complex. See USERDATA overrides.

wss

Open Java API
In addition to TCL overrides, CAA-WS uses open Java APIs. Details are written in JavaDoc and are located at
HCIROOT/CAA/ws/OpenJavaAPIDoc.

These APIs are classified in two parts:

• com.infor.cloverleaf.gjdws.message.RawWSMetaRequest and com.infor.cloverleaf.gjdws.message.Jax
WSMetaRequest

Infor Cloverleaf Application Adaptor Web Services User Guide | 30DRAFT

API

You can use these two beans to provide metadata for schedule mode web clients in configuration files.
Their functionality is almost the same as the TCL APIs in overriding the USERDATA. The difference is that
for schedule mode clients, there is no triggering message to flow through any TPS. Details are located in
the JavaDoc.

• com.infor.cloverleaf.gjdws.async.AsyncWsClientNoExceptionHandler and com.infor.cloverleaf.gjdws.
async. AsyncWsRawClientNoExceptionHandler

These two classes are the Java access points for asynchronous mode clients. When implemented, these
handlers are a supplement for users who have lost track of request-response pairs in regular TPS such
as inbound reply TPS in asynchronous mode.
The cloverleaf-no-exception option must be "true" to make the handlers effective. Additionally, CAA-WS
has a default handler implementation when the option is "true". Details are located in the JavaDoc.

Infor Cloverleaf Application Adaptor Web Services User Guide | 31DRAFT

API

Local Binding

In some instances, it is better to bind a connection to a particular local IP on NIC. This is already performed
for the CIS TCP protocol.

For example, in some countries have multiple governmental web services. One of the security layers is where
the government web server verifies the IP address that a user is employing. In these instances, users require
the option to bind to a certain IP that is known to be safe.

Similar situations also happen in the cloud and HA environments. Without an option to configure a binding
to an InetAddress to use within a Cloverleaf HA environment, the connection then comes from a local NODE
IP. This is undesirable.

The Edit tab of the Web Services Consumer contains a text field in which users can configure a particular IP
address. The SOAP Consumer, REST Consumer, and RAW Consumer of the WS Consumer, and their edit tabs,
all support usage of that particular IP address.

GUI design

The WS Consumer General tab contains a Local Binding Address text field. Characteristics of Local Binding
Address include:

• Support for configuring an IP address or a host name.
This is optional. The default is blank, and connection is made to the server as before.

• The location of Local Binding Address is different on different WS Consumers.
• On the REST/SOAP Consumer, it is below the Address field.
• On the Raw Consumer, it is below the Default Method field.

Local Binding Address is validated on the user interface. When the local binding address is invalid, such as
"!!!", a warning message opens: "The local binding address is detected as an invalid address. Do you
want to continue?".

Data Flow

The local binding address for GUI data flow is:

The SOAP/REST/RAW Consumer GUI requests the NetConfig Server to get the local binding address from ap
plicationContext_ThreadName.xml. It then saves the value of Local Binding Address from the GUI into this
file.

Infor Cloverleaf Application Adaptor Web Services User Guide | 32DRAFT

Local Binding

Testing on the GUI

To test on the GUI:

1 Create a java/ws-client protocol thread and click Properties. This opens the WS Client dialog box.
2 Click New to create a SOAP/REST Consumer.
3 Select the created consumer and configure an IP address or a host name into Local Binding Address on

the General tab.
4 Click the OK button to apply the change and then Save the NetConfig.
5 Reopen the WS Client dialog box and the configured IP address or host name should successfully load.

Or, you can check the configuration in applicatinContext_ThreadName.xml.
6 Create a java/ws-rawclient protocol thread, then create a RAW Consumer and follow the previous steps

1-5.
7 Use the configured Local Binding Address (IP address or host name) to connect to the server. If this is

an invalid IP address or host name, then the consumer cannot connect to the server. An exception is
logged into Process.log located in the Process folder.

Infor Cloverleaf Application Adaptor Web Services User Guide | 33DRAFT

Local Binding

CAA-WS IDE properties GUI

CAA-WS is built upon the Java driver. When CAA-WS is installed, new protocols that are based upon the Java
driver are available in the Cloverleaf IDE.

These are the CAA-WS installed protocols. Clicking the Properties button opens a dialog box specific to each
of these protocols. For example, when ws-client is selected, you can create SOAP and REST client
configurations. These dialog boxes automatically configure the Java driver and create the XML configuration
files that configure the CAA-WS components.

For the XML structure of the configuration files which the GUI creates, refer to the Apache CXF configuration
guide. See http://cxf.apache.org/docs/configuration.html.

The CAA-WS protocols are configurable similar to other protocols. You select the protocol and use the dialog
box that displays by clicking Properties to configure it. Click Apply to retain your updates and save the
NetConfig. This is the same for CAA-WS as for other protocols.

When a new thread is created and a process name is specified, or when you change the thread or process
name, you must click Apply. This must be finished before clicking Properties to edit the configuration in the
dialog box. This is because the Properties dialog box must know the actual thread/process information to
write its configuration files.

For Cloverleaf 6.0.1 users, there is a small bug that requires you to click OK, apply changes, and reopen the
Properties dialog box. This must be finished before configuring SOAP clients or servers. Otherwise, you
receive an error when trying to browse for your WSDL. This is fixed in Cloverleaf 6.1 and later versions.

You should not put two separate Java driver threads in the same process, because CAA-WS is based on Java
driver. There are some cases where this can work with Java driver, but with CAA-WS it causes trouble. You
must ensure they are in separate processes. They can share with other protocols, but not other CAA-WS or
other Java driver threads.

Do not change the Java Driver process working directory. When you create one of these product’s threads in
a given process, the working directory defaults to $SITEPATH/javadriver/process name. This should not be
changed as it can cause errors. All file relative paths are automatically computed when you select the various
Browse buttons to select files.

CAA-Direct Retriever and CAA-Direct Sender
CAA-Direct is built upon the Java Driver. When CAA-Direct is installed, protocols that are based upon Java
Driver become available in your system IDE.

Infor Cloverleaf Application Adaptor Web Services User Guide | 34DRAFT

CAA-WS IDE properties GUI

http://cxf.apache.org/docs/configuration.html

The Network Configurator’s Protocol menu lists the CAA-Direct installed protocols.

When direct-sender is selected, you can create SMTP configurations.

When direct-retriever is selected, you can create POP3 or IMAP configurations.

CAA-WS Client, CAA-WS RawClient and CAA-WS Server
CAA-WS is an extension to the core system functionality, built upon the Java driver. When CAA-WS is installed,
new protocols that are based upon the Java driver are available in the Cloverleaf IDE.

In the Network Configurator, the Protocol menu lists the CAA-WS installed protocols:

• When ws-client is selected, you can create SOAP and REST Client configurations.
• A SOAP Client does SOAP/HTTP calls to a web server sending/receiving SOAP messages.
• A REST Client does HTTP calls to a web server sending/receiving XML messages. Other message types

are not supported.

When ws-rawclient is selected, you can configure HTTP calls to a web server.

When ws-server is selected, you can create SOAP Server, REST Server, and Raw Server configurations.

• A SOAP server receives SOAP/HTTP calls and replies with a SOAP message.
• A REST server listens for HTTP requests containing XML messages. Other message types are not supported.
• A Raw server answers HTTP calls.

These dialog boxes configure the Java driver automatically and create the XML configuration files that configure
the CAA-WS components.

ION Retriever
With the CAA-ION adapter, you can send outbound Business Object Documents (BODs) to ION IOBox database
tables (IOBox). You can also retrieve inbound BODs from an IOBox. An IOBox is a predefined set of tables in
a database that ION knows how to interact and communicate with using predefined BODs.

The GUI is integrated directly inside the Cloverleaf IDE. It writes all the configuration files necessary without
the user doing manual edits, except in specialized circumstances. Users have the ability to create custom
overrides before inbound/outbound message transmissions.

ION-Retriever configuration is performed through the Network Configurator by selecting the java/ion-retriever
protocol. This protocol retrieves and sends BODs and maps to the IOBox COR_INBOX* tables.

For the Retriever, an inbound message on the CAA-ION thread is sent to the outbound threads.

• The Retriever class inside the Java Driver thread initiates a JDBC query (request) to the database server.
You can configure this to run as often as necessary.

Infor Cloverleaf Application Adaptor Web Services User Guide | 35DRAFT

CAA-WS IDE properties GUI

• The database returns a list of BOD messages in the IOBox’s INBOX* tables, which constitutes the JDBC
response.

• For each BOD message on the list, the Retriever class sends a Cloverleaf message out through the Java
Driver thread. When the message is successfully stored in the recovery database, the BOD message’s
rows are deleted from the IOBox tables. The delete transaction is committed immediately after successful
entry of the message into the recovery database. This repeats until all BODs in the IOBox are processed.

In Server/Retriever/Inbound mode, when the runtime is set to retrieve BODs from an IOBox, it is acting as a
server. It does this by placing inbound messages into the Cloverleaf engine. You can set up a server thread
by creating a java/ion-retriever protocol thread.

The Retriever queries BODs from IOBox. As such it is not strictly a server because messages are not sent to it
from ION directly. Cloverleaf polls the configured IOBox(s) periodically to retrieve any new BODs.

Cloverleaf receives messages from ION and passes them into Cloverleaf as an inbound pre-inbound TPS

The configuration file can use multiple IOBox Retriever configurations. These configurations:

• Provide all necessary fields to make the connection to the IOBox as a single database user.
• Specify which Tenant Id and To Logical Id entries that this Retriever is acquiring. A given set of IOBox

tables can be shared between different applications. In this way, a thread should only extract rows from
the database that is addressed to its Tenant Id and To Logical Id combination.

The IOBox that is listed in the configuration file is periodically processed. The period between connections
is configurable using the Advanced Scheduler.

ION Retriever dialog box
The ION Retriever is configured using the java/ion-retriever protocol.

This is referred to as server mode, because it acts as a server thread to Cloverleaf. It retrieves messages from
an IOBox database and sends them inbound to Cloverleaf.

Selecting the java/ion-retriever protocol and clicking Properties opens the ION Retriever dialog box.

The Retrieve Interval field applies to all of the Retriever configurations within the thread. This specifies in
seconds how often to check all the IOBox configurations for new BODs. If left blank, then the default is 30
seconds.

This table shows the available fields for individual Retriever configurations:

DescriptionField/Option

Optional. This is used to distinguish similar tabs. If
an ID is used, then it must be unique with respect to
all other IDs in the thread’s configuration.

ID

Required. Choices are SQLSERVER, Oracle, DB2, or
DB2_400.

Database Type

Required. This is the IP or DNS name of the database
server. Specifying a host automatically fills in the
URL field.

Host

Infor Cloverleaf Application Adaptor Web Services User Guide | 36DRAFT

CAA-WS IDE properties GUI

DescriptionField/Option

Required. This is the port on which the database
server is listening. The default SQL Server port is
1433.

Port

Required. This is the name of the database schema
to connect to.

Database Name

This is the Database URL.URL

Required. These are the log-in fields to authenticate
against the database.
The password can be encoded using the standard
Java driver encoding by selecting Password Encod-
ed. When using an un-encoded password, the engine
prints out the encoded password at startup. You can
take this encoded password and overwrite the un-
encoded password. The difference is that the pass-
word is stored in the application context XML file in
an encoded form. In this way, users cannot acciden-
tally view other users’ passwords.

User, Password, and Confirm Password

This is the tenant value for retrieving BODs. If left
blank, then it uses the ION default of infor.

Tenant Id

Required. This is the logical ID value for retrieving
BODs. This is so that an application can use the same
IOBox as another, yet keep its data separate within
the same tenant. This is required because there is
no default value.

To Logical Id

This is for selecting the method of determining the
TrxId. If left blank, then no transaction ID is sent.
Options are:
• TOLOGICALID. This uses To Logical Id as the Trx-

Id.
• FROMLOGICALID. This uses From Logical Id as the

TrxId.
• TENANTID. This uses Tenant Id as the TrxId.
• BODTYPE. This uses the Verb.Noun BOD Type

header as the TrxId.
• VALUE. This places the value from Cloverleaf

TrxId Value as the TrxId. This is useful with
multiple Retriever configurations in one thread

• NULL. This explicitly declares the TrxId to not be
set.

Cloverleaf TrxId Determination

This is used as the TrxId if Cloverleaf TrxId Determi-
nation is set to VALUE.

Cloverleaf TrxId Value

Infor Cloverleaf Application Adaptor Web Services User Guide | 37DRAFT

CAA-WS IDE properties GUI

DescriptionField/Option

This is used to disabled the logging of exceptions if
they become too numerous. For example, if a
database server is known to be down during the
night for daily maintenance, the logs could become
too large. When this is the case, the user might elect
to disable these exceptions.

Cloverleaf Log Exceptions

ION Sender
The CAA-ION adapter provides system users the ability to send outbound BODs (Business Object Documents)
to ION IOBox database tables (IOBox). It also retrieves inbound BODs from an IOBox. An IOBox is a predefined
set of tables in a database that ION knows how to interact and communicate with using predefined BODs.

The GUI is integrated directly inside the Cloverleaf IDE. It writes all the configuration files necessary without
the user doing manual edits, except in specialized circumstances. Users have the ability to create custom
overrides before inbound/outbound message transmissions.

ION Sender configuration is performed through the Network Configurator by selecting the java/ion-sender
protocol. This protocol retrieves and sends BODs and maps to the IOBox COR_OUTBOX* tables.

For the Sender, the outbound message is sent by the CAA-ION thread to the IOBox OUTBOX* tables.

• An inbound Cloverleaf thread sends a message to the Java Driver thread.
• After this, the Sender class within the Java Driver thread sends the message by JDBC to the IOBox’s

OUTBOX* tables.
• The Sender class is completed after it successfully commits the database transaction. The Cloverleaf

thread receives no reply message.

In Client/Sender/Outbound mode, the IOBox Sender thread sends a BOD to an IOBox as a Cloverleaf outbound
thread. Sender sends messages out to the preconfigured IOBox. There are no reply messages sent or received
by Cloverleaf.

When the runtime is set to send BODs from an IOBox, it is acting as a client. It gets outbound messages from
the Cloverleaf engine and sends those messages to an IOBox. You set up a client thread by creating a
java/ion-sender protocol thread.

The configuration file can use multiple IOBox Sender configurations.

Cloverleaf metadata field USERDATA are used on outbound Cloverleaf messages to perform overrides. These
features are available to override:

• Configuration to use if there are multiple sender configurations present in the config file. If there is only
one configuration, then no selection is necessary.

• Default ION headers.
• Inclusion of other ION headers to send in addition to the default header (for example, headers that change

with every message).

Infor Cloverleaf Application Adaptor Web Services User Guide | 38DRAFT

CAA-WS IDE properties GUI

ION Sender dialog box
The ION Sender is configured using the java/ion-sender protocol.

This is referred to as client mode, because it acts as a client thread to Cloverleaf. It gets outbound messages
from Cloverleaf and sends them to the IOBox database.

Selecting the java/ion-sender protocol and clicking Properties opens the ION Sender dialog box.

For sending, there is only one Sender configuration type. A new ION Sender creates additional instances of
it.

The Sender entry contains connection information for making the database connection. The various default
values assist in reducing USERDATA workload by setting defaults for various IOBox column and header fields.

This table shows the available fields:

DescriptionField/Option

This is optional if there is only one Sender entry and
is used to distinguish similar tabs. If an ID is used,
then it must be unique with respect to all other IDs
in the thread’s configuration.
• When there is only one Sender entry, that entry

is automatically used to send BODs.
• When there is more than one Sender entry, the

ID is passed in USERDATA. This is used to distin-
guish for a given message which sender entry
to connect with.

ID

Required. Choices are SQLSERVER, Oracle, DB2,
orDB2_400.

Database Type

Required. This is the IP or DNS name of the database
server. Specifying a host automatically fills in the
URL field.

Host

Required. This is the port on which the database
server is listening. The default SQL Server port is
1433.

Port

Required. This is the name of the database schema
to connect to.

Database Name

Infor Cloverleaf Application Adaptor Web Services User Guide | 39DRAFT

CAA-WS IDE properties GUI

DescriptionField/Option

Required. These are the log-in fields to authenticate
against the database. The password can be encoded
using the standard Java driver encoding by selecting
Password Encoded.
When using an unencoded password, the runtime
prints out the encoded password at startup. You can
take this encoded password and overwrite the unen-
coded password. The difference is that the password
is stored in the application context XML file in an
encoded form. In this way, users cannot accidentally
view other users’ passwords.

User, Password, and Confirm Password

This is an integer value for setting message priority.
There is no value in the BOD to indicate this. It must
be set here or in the USERDATA as an override.
The default is 4, with 0 being the lowest priority
message and 9 the highest.

Default Message Priority

This is used if the BOD does not provide a tenant ID.Default Tenant ID

This is used if the BOD does not provide a logical ID
for the sender.

Default From Logical ID

This is used if the BOD does not provide an account-
ing entity. This is for message tracking in ION.

Default Accounting Entity

This is used if the BOD does not provide a location.
This is for message tracking in ION.

Default Location

When true is selected, this causes various checks to
be run against an outbound message, looking for
mistakes. This uses extra CPU resources and should
be used only in development.
For example, this checks if a BOD field value does
not match the default value in the configuration or
the override value in USERDATA. This is because
header data that does not match the BOD could be
the source of an error.

Enable Message Validation Check

Conduit
A conduit is used to set HTTP connection details. For example, a conduit can put TLS on the connection. A
conduit can also add HTTP basic authentication, proxy settings, and time-out settings.

Infor Cloverleaf Application Adaptor Web Services User Guide | 40DRAFT

CAA-WS IDE properties GUI

A conduit uses a single name attribute. This specifies an expression to be matched against the various clients
that exist in a configuration file.

The conduit name can be in different formats:

• A regular expression to match a URL.
For example, http://somehost:port/url*. This indicates that the conduit can associate with the clients
whose address is http://somehost:port/url, or a subset of that path.

• <soap port>.http-conduit

For example: {urn:ihe:iti:xds-b:2007}DocumentRegistry_Port_Soap12.http-conduit. This indicates that
the conduit associates with the SOAP clients whose port is {urn:ihe:iti:xds-b:2007}DocumentReg
istry_Port_Soap12

• *WebClient.http-conduit

The conduit associates with all Raw clients.

• *.http-conduit

The conduit associates with all clients.

A REST client follows this order until it locates the matched conduit:

1 Locate a conduit whose name is a URL regular expression and matches the address of the REST client.
2 Locate a conduit whose name is *.http-conduit.

A SOAP client follows this order until it locates the matched conduit:

1 Locate a conduit whose name is a URL regular expression and matches the address of the SOAP client.
2 Locate a conduit whose name is a Port format and matches the port of the SOAP client.
3 Locate a conduit whose name is *.http-conduit.

A Raw client follows this order until it locates the matched conduit:

1 Locate a conduit whose name is a URL regular expression and matches the address of the Raw client.
2 Locate a conduit whose name is *WebClient.http-conduit.
3 Locate a conduit whose name is *.http-conduit.

If the current Consumer’s URL is an HTTPS type, then it must have a Conduit configured with TLS to access.

If any existing conduit matches, then it can be directly used. You are not required to create a conduit. Otherwise,
a new conduit with TLS should be created to ensure the HTTPS Consumer functions properly.

When creating a new conduit, by default, “Name” is filled with the URL from the Consumer’s address with an
asterisk. For example, http://somehost:port/url*.

TLS Secured on the conduit
HTTP addresses can specify TLS Secured on the conduit.

The default value of TLS Secured depends on the URL Consumer type:

• This is cleared and disabled by default when the Consumer address is an HTTP URL.
• This is enabled and selected by default when the address is an HTTPS URL.

Infor Cloverleaf Application Adaptor Web Services User Guide | 41DRAFT

CAA-WS IDE properties GUI

CAA-WS auto-creation of JKS for HTTPS
With this feature, you can generate a keystore/truststore without having to use command-line tools.

You can:

• Generate Keystore/Regenerate Keystore
• Generate Truststore/Update Truststore

These actions are located at:

• WS Raw Client/WS Client > Conduit > TLS tab > Keystore/Truststore panel
• WS Server > Engine > TLS Secured panel

To begin the Conduit Creating wizard:

1 Click Add in the WS Client/WS Raw Client dialog box. Then, select Create Conduit.
You can also select Create Raw/SOAP/REST Consumer and then select Create New Conduit in the
Create Conduit page.

2 On the Create Conduit-Basic Settings page, select TLS Secured.
3 On the Create Conduit-TLS Settings page, generate the keystore/truststore.

Keystore generation

A Generate Keystore button is located on the Keystore panel of the Engine Panel TLS Section, Conduit TLS
Panel, and Conduit Creating wizard. Clicking this opens the Generate Keystore(JKS) With Certificate dialog
box.

Note: Only JKS is currently supported.

On the Generate Keystore(JKS) With Certificate dialog box, you can generate a keystore with a self-signed
certificate. To do this, specify the keystore information and certificate information.

Clicking More... opens the Certificate Information dialog box. In this dialog box, you can specify all information
related to certificate generation.

These fields are available for Generate Keystore:

DescriptionName

Name of the keystore. Only lowercase letters, num-
bers, dashes, and underscores are allowed. Do not
include file name extensions.

Keystore Name*

Directory of the keystore.Keystore Directory*

Password of the keystore.Keystore Password*

Confirm password for keystore.Confirm Password*

Password of the certificate.Certificate Password*

Confirm password for the certificate.Confirm Password*

Infor Cloverleaf Application Adaptor Web Services User Guide | 42DRAFT

CAA-WS IDE properties GUI

DescriptionName

Alias of the certificate.
Click More. . . to add the certificate information.
This opens the Certificate Information dialog box.
• Common Name*
• Country
• Email
• Locality
• Organization
• State
• Unit
• Validity Period (Days)

The default is “3650”.

Alias*

If the keystore already exists, then this becomes a Regenerate Keystore. This opens the Regenerate
Keystore(JKS) With Certificate dialog box. The keystore Information fields are already populated.

A Replace Existing Keystore? warning opens when you reuse the same keystore name and directory.

After generation has completed, these files are located under the specified directory:

• keystore_name-cert.der

• keystore_name-key.der

• keystore_name.jks

Truststore generation

A Generate Truststore button is located on the Truststore panel of the Conduit TLS panel and Conduit
Creating wizard.

Click this button to open the Import Certificate to Generate Truststore(JKS) dialog box.

Note: Only JKS is currently supported. You cannot generate truststores on the server side Engine panel.

You can generate the truststore by importing certs from the server to which you intend to connect.

To do this, specify the truststore and certificate information in "host:port" format. Other required fields
pertaining to the truststore must also be specified.

These fields are required to generate a truststore:

DescriptionName

Name of the truststore. Only lowercase letters,
numbers, dashes, and underscores are allowed. Do
not include file name extensions.

Truststore Name*

Directory of the truststore.Truststore Directory*

Password of the truststore.Truststore Password*

Specify the truststore password again to confirm.Confirm Password*

Infor Cloverleaf Application Adaptor Web Services User Guide | 43DRAFT

CAA-WS IDE properties GUI

DescriptionName

Host and port to get certs. Example: localhost:7443Server (Host:Port)*

If a truststore already exists, then there is an Update Truststore button. This opens the Import Certificate
To Update Truststore(JKS) dialog box.

• If the Certificate Server(host:port) is the same, then the old certificate in truststore is replaced with the
new certificate.

• If the Certificate Server(host:port) is different, then the new certificate is appended after the old certificate.

After generation is done, a truststore_name.jks file is located under the specified directory.

Creating a sample client
This covers creating a SOAP Client. REST and Raw are similar.

1 Select the java/ws-client protocol and click Properties (click Apply after setting the thread/process
name for your new thread).

2 Click New to start the wizard, then click Create SOAP Consumer.
3 Click Next. On the Import WSDL page, specify a WSDL URI*.

This example uses Weather Service. This WSDL is available at http://wsf.cdyne.com/WeatherWS/Weather.
asmx?WSDL.
Note: Using a WSDL at an HTTP address can be dangerous if the WSDL becomes unavailable. This causes
the client service to fail to start. It is suggested to save a copy of a WSDL to the local hard disk and access
it from there.

4 Click Next.
5 Specify this information:

Address is for address overrides. In this example, it is set to empty to use the address supplied in the
WSDL. The address is used when a server implements a widely available WSDL based on a standard where
the address in the WSDL is generic. In this case, you must override it with the address of the server with
which this is interacting.
Selecting a Service populates the Port list. There are multiple ports within this service, so the port is not
auto-selected, but would be if there was only one. There are two SOAP ports named WeatherSoap and
WeatherSoap12. These are for SOAP 1.1 and SOAP 1.2 ports. In this example, the later SOAP 1.2 is selected.

6 For Service Mode, selecting PAYLOAD (recommended) tells the system to send/receive only the contents
of the SOAP Body element. CXF handles the SOAP Envelope/Header.
Use PAYLOAD mode unless there is information in the SOAP Header that is required or must be sent that
CXF does not already handle.
MESSAGE indicates the system user is sending/receiving the entire SOAP Envelope. This permits greater
flexibility but is also more complicated and error prone.

7 Click Next. This opens the Generate and Compile XSDs wizard page.

Infor Cloverleaf Application Adaptor Web Services User Guide | 44DRAFT

CAA-WS IDE properties GUI

To generate an XSD, fill the fields and click Generate and Compile Target XSDs, otherwise, click Next
to skip the generation. All schemas are imported from the WSDL file from the step above.
Operation selects the first item by default. The Target XSD filename field is changed according to the
selection of this field.
Soap Header Preference selects Any headers are allowed by default.
Click Generate and Compile Target XSDs to generate and compile the XSD out of the current WSDL.
XSDs are generated under $HCISiteDir/formats/xml/{THREADNAME}/ using the names {OPERATION_NAME}
_input.xsd and {OPERATION_NAME}_output.xsd. The Results area shows the output and any errors during
XSD generation..

8 Click Next. This opens the Create Conduit wizard page.

Creating a new conduit
To create a new conduit:

1 Select Create New Conduit and click Next.
The ensuing wizard pages are for setting conduit details. See Conduit on page 75.

2 Specify a conduit name. See TLS Secured on the conduit on page 41.
If an existing conduit matches, then you are not required to create a conduit. Otherwise, a new conduit
with TLS is created to ensure the HTTPS Consumer functions.

3 Specify TLS Secured on the conduit using an HTTP address.
The default value of TLS Secured depends on the URL Consumer type:
• This is cleared and disabled by default when the Consumer address is an HTTP URL.
• This is enabled and selected by default when the address is an HTTPS URL.

Bus
A Bus is a bucket whose children apply to everything else "on the Bus."

For example, a SOAP client does not have WS-Addressing checked or logging enabled. If the Bus does, then
the client inherits the ws-addressing and logging features.

This permits numerous clients in one thread config, and turning logging on/off for all at one time.

Infor Cloverleaf Application Adaptor Web Services User Guide | 45DRAFT

CAA-WS IDE properties GUI

Creating a sample server
This section covers creating a SOAP Server, that is, Provider, as they are the most complicated. REST Servers
are similar.

1 Select the java/ws-server protocol and click Properties.
2 Click New and select SoapProvider. The help at the top explains the general flow.
3 For WSDL URI, specify the WSDL and any referenced XSD files within the working directory for the Java

driver thread. Then, reference it with a relative path.
As there is only one service in the WSDL and only one port within that service, they are auto-selected. In
most cases, the WSDL has a generic URL which is not the URL to deploy your service. Use the address
field to override it and set a path for the URL.
This example shows an XDS.b Registry. If this service is deployed to another machine and the same WSDL
path does not exist, then the service cannot find the WSDL. In this instance, it fails to start.
For example, a WSDL XDS.b_DocumentRegistry.wsdl is in the ws_sample site’s WS/XDSb.Support.Materials.
v10/wsdl directory. Click Browse to locate it, and Load WSDL to parse it.

4 Service Mode is the same as that in the previous Client section.
5 Published Endpoint URL is an optional field for populating the address in the generated WSDL when a

Client adds ?wsdl to the service address.
For example, a service resides on a machine within a company’s firewall named amazing42. The outside
world is routed into this machine using the DNS name cloud.amazing.com.
If the service is at http://amazing42/myservice, then you can get the WSDL within the network by calling
http://amazing42/myservice?wsdl. This generates a WSDL with the service address as expected as http:
//amazing42/myservice.
This works for internal testing, but when customers run it at http://cloud.amazing.com/myservice?wsdl
, a public service address other than http://amazing42/myservice must be returned. If not, then their
clients fail without address overrides.
In this case, put http://cloud.amazing.com/myservice in Published Endpoint URL. The returned WSDL
now has the correct service address to calling users.

Logical view
The properties of this server are found on the right side panel where they can be specified or selected from
a menu. Pausing on a property opens the tooltip that explains the property.

As with the SOAP Client, the general properties are grouped under the General tab.

For configuring the WS-Policy settings, see WS-Policy.

Infor Cloverleaf Application Adaptor Web Services User Guide | 46DRAFT

CAA-WS IDE properties GUI

Creating an engine
Selecting Engine opens the Add Jetty Engine dialog box, where you specify a Port.

An Engine represents a Jetty engine instance, which is to say that it controls how Jetty listens on given IP
address and port. It is used to configure such things as threading and TLS security configuration on a given
port.

If you specify only the port and no host, then the settings control that port on all interfaces. Specifying an IP
address in the host box restricts the settings to that port on that specific IP address. Port is always required.

Properties are then set to configure how Jetty handles a single port. For example, port 9000 can be a mutually
authenticated TLS server port and run with 100 listening threads.

The Host property configures the network interface on which this port is listening. This is left blank to listen
on all interfaces for the host.

Server IP addresses
When setting up a Provider, it has an endpoint URL on which it listens.

• If the URL's port matches a port in the list of server engines, then the listening IP address is determined
by the engine's host parameters.

• If the URL's port does not match any ports in the list of server engines, then the URL's IP address is used.

The IP address for a server, or Provider, can restrict from where requests can come.

• If the IP address is 127.0.0.1, then only clients on the same host can connect to the Provider.
• If the IP address is 0.0.0.0, then requests can come from any network interface that is connected to the

computer. This can also happen if you are using an engine where the host is not specified,
• If the IP address is an address for a specific network interface (for example, 192.168.1.5), then only

connections coming into that network interface are accepted. For example, if the machine has two NICs
and the other one is on 10.0.0.2, then only requests to 192.168.1.5 are accepted.

Creating a RAW server
Selecting RawHandler opens the Add Raw Server dialog box, where you specify a Path and Port.

A Raw server is different from a SOAP or REST Server.

SOAP/REST runs in CXF which runs in Jetty. Raw is designed to be as close to the HTTP stack as possible with
the system. It runs on top of Jetty and outside CXF.

The configuration is also different from SOAP/REST.

A Raw server is a Jetty Handler object. It is a handler within an engine within the engine-factory. Further, it
is a handler within a handler.

Infor Cloverleaf Application Adaptor Web Services User Guide | 47DRAFT

CAA-WS IDE properties GUI

Click New Raw Server in the Properties dialog box of the sample thread that was created for the sample
SOAP server. This opens the Add Raw Server dialog box:

• Port is the port on which to listen. For example, 9000.
• Path is where all requests starting at that path are handled. For example, /raw.

This creates a new engine on the port on which to listen. Or, this reuses an engine if one is already configured.
If you created an engine on port 9000 with the SOAP example, then it opens a message stating the engine
already exists. This is not an error, only a notice.

Within the new engine a context handler is added to handle all requests to a given path or below. For example,
/raw or /raw/whatever/path/works are also handled.

Inside that context handler goes the CAA-WS handler that takes all requests to that context and passes them
to the system.

Placeholder REST server
CXF is made so that it only starts engines for ports which have a configured CXF server.

When a Raw server is created on a port that does not have another configured CXF server, a placeholder REST
server is also created. This is created on the same port, so that CXF starts the port.

Select it to see that the address is http://localhost:9000/dummyServerToStartPortForRawServer.

This is a placeholder path not meant to be used. The port is 9000. That starts that 9000 engine. The handler
within it is also started.

Switching to the physical view shows the added corresponding elements.

The context handler grabs all requests to the /raw context. Within that context is the handler to send all those
requests to the system.

Note: Do not delete the placeholder REST endpoint unless there is another SOAP or REST server listening on
that same port. This ensures that the engine gets started.

Logical client items and their fields
This table lists the logical client items.

DescriptionFieldItem

SOAP Client

Dispatch nameName

URI to the WSDLWSDL Location

QName showing service name within the WSDLService Name

Infor Cloverleaf Application Adaptor Web Services User Guide | 48DRAFT

CAA-WS IDE properties GUI

DescriptionFieldItem

QName showing port name within the WSDLPort Name

Combo box containing PAYLOAD, MESSAGEService Mode

Address override fieldAddress

Whether to enable WS-AddressingWS-Addressing

Boolean: Only enabled if WS-Addressing is en-
abled

- Allow Duplicates

Boolean: Only enabled if WS-Addressing is en-
abled

- Addressing Required

Enables CXF message logging.
Note: The default size limit at which messages
are truncated in the log is 102400.

Logging

Selecting this with true causes SpnegoAuthSupp
lier to use the OID (Object identifiers) for Sp-
nego. Some servers require the OID for Kerberos.

auth.spnego.useKerberosOid

Selecting this with true causes the receiving
service to implement the credential delegation.

auth.spnego.requireCredDelegation

This is a list that contains SOAPACTION, VALUE, US
ERDATA, and NULL.

Cloverleaf TrxId Determination

String field that is enabled only if prior Determi-
nation is set to VALUE

- Cloverleaf TrxId Value

Relative or absolute path to store inbound at-
tachments

Cloverleaf Attachment Directory

Boolean to copy inbound driver control to the
outbound response message. false is the de-
fault.

Cloverleaf Copy DriverControl

Infor Cloverleaf Application Adaptor Web Services User Guide | 49DRAFT

CAA-WS IDE properties GUI

DescriptionFieldItem

Boolean, where a true value declares that all
messages should get a response message, even
if it is an error message. false is the default and
indicates that exceptions cause the message to
go to the Cloverleaf error database. If true, then
the runtime attempts to return a message to the
calling Cloverleaf thread. In general, when
something is incorrect there is an exception
thrown and the message gets thrown into the
error database. When this setting is true, CAA-
WS attempts to return a message instead. In the
case of an error, that message contains an exce
ption key in the USERDATA response. That keyed
list entry has a nested keyed list containing mes
sage. This is the error message. Optionally, there
is a cause key if the exception has cause informa-
tion. There is always a stackTrace key holding
the full error stack trace. There is a level key
with the values send or top.
• send indicates it failed to send from a con-

nection problem. If the user has selected
Copy driver control or chosen to set the
Trxid, then those things are performed on
the response message.

• top indicates there is a more serious pro-
gramming error and it cannot copy driver
control or set a Trxid on the response mes-
sage. In this case, implementers must check
for this key in Tcl code and handle it appro-
priately.

Cloverleaf No Exceptions

Boolean to validate inbound response messages
against WSDL's schema. false is the default.

Schema Validation Enabled

Boolean to enable MTOM support. false is the
default

MTOM Enabled

Provides a list of headers to send/override in
outbound request

Request Header Overrides

REST Client

Dispatch nameName

Except for SOAP, this is required because there
is no WSDL from which to get the address.

Address

Infor Cloverleaf Application Adaptor Web Services User Guide | 50DRAFT

CAA-WS IDE properties GUI

DescriptionFieldItem

Enables CXF message logging.
Note: The default size limit at which messages
are truncated in the log is 102400.

Logging

Selecting this ("true") lets SpnegoAuthSupplier
use the OID(Object identifiers) for Spnego. Some
servers require the OID for Kerberos.

auth.spnego.useKerberosOid

Selecting this ("true") lets the receiving service
implement the credential delegation.

auth.spnego.requireCredDelegation

Combo box - VALUE, USERDATA, NULLCloverleaf TrxId Determination

String field that is enabled only if prior Determi-
nation is set to VALUE

- Cloverleaf TrxId Value

Relative or absolute path to store inbound at-
tachments

Cloverleaf Attachment Directory

Boolean to copy inbound driver control to the
outbound response message. false is the de-
fault.

Cloverleaf Copy DriverControl

Infor Cloverleaf Application Adaptor Web Services User Guide | 51DRAFT

CAA-WS IDE properties GUI

DescriptionFieldItem

Boolean where a true value declares that all
messages should get a response message, even
if it is an error message. false is the default and
indicates that exceptions cause the message to
go to the Cloverleaf error database. If true, then
the runtime attempts to return back a message
to the enabled Cloverleaf thread. In general,
when something is incorrect there is an excep-
tion thrown and the message gets thrown into
the error database. When this setting is true,
CAA-WS attempts to return a message instead.
In the case of an error, that message contains
an exception key in the USERDATA response.
That keyed list entry has a nested keyed list
containing message. This is the error message.
Optionally, this is a cause key if the exception
has cause information. It is always a stackTrac
e key holding the full error stack trace. There is
a level key with the values send or top.
• send indicates it failed to send from a con-

nection problem. If the user has selected
Copy driver control or chosen to set the
Trxid, then those are performed on the re-
sponse message.

• top indicates there is a more serious pro-
gramming error and it cannot copy driver
control or set a Trxid on the response mes-
sage. In this case, implementers must check
for this key in Tcl code and handle it appro-
priately.

Cloverleaf No Exceptions

Provides a list of headers to send/override in
outbound request

Request Header Overrides

Raw Client

Web Client nameName

Except for SOAP, this is required because there
is no WSDL from which to get the address.

Address

Combo box - HTTP Methods: GET (default), POS
T, HEAD, PUT, DELETE, OPTIONS, TRACE, and CONNEC
T.

Default Method

Combo box - VALUE, USERDATA, NULLCloverleaf TrxId Determination

String field that is enabled only if prior Determi-
nation is set to VALUE

- Cloverleaf TrxId Value

Infor Cloverleaf Application Adaptor Web Services User Guide | 52DRAFT

CAA-WS IDE properties GUI

DescriptionFieldItem

Boolean to copy inbound driver control to the
outbound response message. false is the de-
fault.

Cloverleaf Copy DriverControl

Relative or absolute path to store inbound at-
tachments.

Cloverleaf Attachment Directory

Boolean, where a true value declares that all
messages get a response message, even if it is
an error message. false is the default. This indi-
cates that exceptions cause the message to go
to the Cloverleaf error database. If true, then
the runtime attempts to always return a mes-
sage to the enabled Cloverleaf thread. In gener-
al, when something is incorrect there is an excep-
tion thrown and the message gets thrown into
the error database. When this setting is true,
CAA-WS attempts to return a message instead.
In the case of an error, the message contains an
exception key in the USERDATA response. That
keyed list entry has a nested keyed list contain-
ing message. This is the error message. It could
optionally have a cause key, if the exception has
cause information. It always has a stackTrace
key that holds the full error stack trace. There is
a level key with the values send or top.
• send indicates it failed to send from a con-

nection problem, and if the user has select-
ed Copy driver control or chosen to set the
Trxid. These are performed properly on the
response message.

• top indicates there is a more serious pro-
gramming error and it cannot copy driver
control or set a Trxid on the response mes-
sage. In this case, implementers must check
for this key in Tcl code and handle it appro-
priately.

Cloverleaf No Exceptions

Provides a list of headers to send/override in
outbound request

Request Header Overrides

HTTP Conduit

Pattern with which to match outbound mes-
sages

Name

Group of settingsClient

Default 30000- Connection Timeout

Infor Cloverleaf Application Adaptor Web Services User Guide | 53DRAFT

CAA-WS IDE properties GUI

DescriptionFieldItem

Default 60000- Receive Timeout

Default false - Follow server redirects- Auto Redirect

Default - 1 Number of redirects to follow- Max Retransmits

Default true- Allow Chunking

Default 4096- Chunking Threshold

HTTP Accept header- Accept

What language (for example, American English)
the Client prefers for purpose of receiving re-
sponses

- Accept Language

Specifies what content encodings the Client is
prepared to handle

- Accept Encoding

HTTP ContentType header- Content Type

HTTP Host header- Host

Combo box - Keep Alive, Close- Connection

Values and their meaning are documented on
the CXF website at Client Cache Control Direc-
tives.

- Cache Control

Static cookie to be sent with all requests- Cookie

HTTP User Agent header- Browser Type

HTTP Referer header- Referer

Specifies the URL for the Client to listen on for
asynchronous replies. Requires WS-Addressing.
All calls to the server using this Client are per-
formed asynchronously with this as the ReplyTo
address.

- Decoupled Endpoint

Group of fields to send HTTP Basic, Digest, or
Negotiate Authentication

- HTTP Authentication

The username with which to authenticate-- username

The password with which to authenticate-- password

Basic, Digest or Negotiate authentication type-- type

Group of fields to set outbound communication
proxy

- Proxy

Proxy server address-- server

Proxy server port-- port

Infor Cloverleaf Application Adaptor Web Services User Guide | 54DRAFT

CAA-WS IDE properties GUI

DescriptionFieldItem

SOCKS or HTTP proxy type-- type

List of hosts with which to not use proxy-- non proxy hosts

HTTP Basic, Digest or Negotiate Authentication
for the proxy connection. Child fields are exactly
the same as the above HTTP Authentication
section. See that section for child fields.

-- Proxy HTTP Authentication

Group of settings for TLS supportTLS Client Parameters

Boolean. CN = Common Name.- Disable CN Check

Combo box - SSL, TLS, TLSv1, TLSv1.1, TLSv1.2.
To use TLSv1.1 or TLSv1.2, the process must be
running within a Java 7 JVM. Cloverleaf 6.1 and
above already run Java 7. For earlier releases,
see the Cloverleaf Java Driver documentation
for information on how to use your own JVM in
a Java Driver thread.

- Secure Socket Protocol

Milliseconds- SSL Cache Timeout

JKS, JCEKS, PKCS12- Keystore Type

Password for the entire keystore- Keystore Password

Absolute or relative path from the thread's
working directory.

- Keystore Path

Password for keys within the keystore.- Keystore Key Password

JKS, JCEKS, PKCS12- Truststore Type

Password for the entire truststore- Truststore Password

Absolute or relative path from the thread's
working directory.

- Truststore Path

A comma-separated list of supported cipher
suite names. This cannot be combined with the
cipher suites filter.

- Cipher Suite

A comma-separated list of regular expressions
matching cipher suite names to include. This
cannot be used with the Cipher Suite list.

- Cipher Suites Filter Include

A comma-separated list of regular expressions
matching cipher suite names to exclude. This
cannot be used with the Cipher Suite list.

- Cipher Suites Filter Exclude

Infor Cloverleaf Application Adaptor Web Services User Guide | 55DRAFT

CAA-WS IDE properties GUI

DescriptionFieldItem

Bus
This works on
clients and
servers.

Only affects SOAP Clients/ServersWS-Addressing

Boolean: Only enabled if WS-Addressing is en-
abled

- Allow Duplicates

Boolean: Only enabled if WS-Addressing is en-
abled

- Addressing Required

Enables CXF message logging for all components
except Raw Servers.
Note: The default size limit at which messages
are truncated in the log is 102400.

Message Logging

Boolean to enable detailed checks of the out-
bound message. It is CPU intensive and should
only be enabled in development to check for
coding errors, as it slows production systems.
This checks the outbound message content
against the MESSAGE/PAYLOAD setting. It also
checks for USERDATA keys looking for incorrect
keys and SOAPAction overridden as a header. It
tries to build a list of the probable mistakes be-
ing made in an outbound message and puts that
list in the process log. By default, this is cleared.

Message Validation Check Mode

This enables RawHandler to compress the in-
bound and outbound messages.

Enable GZIP Encoding

This enables all message delivery options.Asynchronous Message Delivery

The core number of threads. The default is 8.-Core Pool Size

The maximum allowed number of threads. The
default is 64.

Maximum Pool Size

This is the amount of time that threads in excess
of the core pool size can remain idle before being
terminated. The default is 30 seconds.

Keep Alive Time

The maximum time to wait for the completed
execution after a shutdown request. The default
is 15 seconds.

Shutdown Timeout

The full class name that is used to customize the
error handler.

Cloverleaf No Exception Handler

Infor Cloverleaf Application Adaptor Web Services User Guide | 56DRAFT

CAA-WS IDE properties GUI

Logical server items and their fields
This table lists the logical server items:

DescriptionFieldItem

SOAP Server

URI to the WSDL.WSDL Location

QName showing service name within the WSDL.Service Name

QName showing port name within the WSDL.Port Name

Combo box: PAYLOAD, MESSAGE.Service Mode

Address override field.Address

Override generated address when someone re-
quests WSDL with ?wsdl.

Published Address

Whether to enable WS-Addressing.WS-Addressing

Boolean: Only enabled if WS-Addressing is enabled.- Allow Duplicate

Boolean: Only enabled if WS-Addressing is enabled.- Addressing Required

Enables CXF message logging.
Note: The default size limit at which messages are
truncated in the log is 102400.

Logging

Combo box: SOAPACTION, PATH, NULL.Cloverleaf TrxId Determination

Default is 30000.Cloverleaf Timeout

Boolean: Should Cloverleaf log exceptions or not.
is false.

Cloverleaf Log Exceptions

Relative or absolute path to store inbound attach-
ments.

Cloverleaf Attachment Directory

When this is selected, the HTTP request headers
from the inbound thread are removed to avoid in-
terfering with and overriding the information set
by the next outbound thread.
This does not happen when their names are listed
in "Cloverleaf Forward Headers".
Otherwise, the HTTP request headers will interfere
with the next outbound thread.

Cloverleaf Request Forward

Infor Cloverleaf Application Adaptor Web Services User Guide | 57DRAFT

CAA-WS IDE properties GUI

DescriptionFieldItem

This assists in the selection of the HTTP request
header name list from the inbound thread to be
forwarded to the next outbound thread.
This is a comma or space separated string.
For example: "mytestheader1,mytestheader2" or
"mytestheader1 mytestheader2".
This is only enabled when "Cloverleaf Request
Forward" is selected.

Cloverleaf Forward Headers

Boolean: Should a fault response contain a stack
trace or not. Default is false.

Fault Stack Trace Enabled

Boolean: Should a fault response contain a cause
or not. Default False.

Exception Message Cause Enabled

Boolean: Whether to validate inbound messages
against the WSDL Schema.
Default is false.

Schema Validation Enabled

Boolean: WShether MTOM support is enabled.
Default is false.

MTOM Enabled

REST Server

Except for SOAP, this is required because there is
no WSDL from which to get the address.

Address

Boolean: Enables CXF message logging.
Note: The default size limit at which messages are
truncated in the log is 102400.

Logging

Combo box: PATH, NULLCloverleaf TrxId Determination

Default is 30000.Cloverleaf Timeout

Boolean: Should Cloverleaf log exceptions or not.
Default is false.

Cloverleaf Log Exceptions

Relative or absolute path to store inbound attach-
ments.

Cloverleaf Attachment Directory

When this is selected, the HTTP request headers
from the inbound thread are removed to avoid in-
terfering with and overriding the information set
by the next outbound thread.
This does not happen when their names are listed
in "Cloverleaf Forward Headers".
Otherwise, the HTTP request headers will interfere
with the next outbound thread.

Cloverleaf Request Forward

Infor Cloverleaf Application Adaptor Web Services User Guide | 58DRAFT

CAA-WS IDE properties GUI

DescriptionFieldItem

This assists in the selection of the HTTP request
header name list from the inbound thread to be
forwarded to the next outbound thread.
This is a comma or space separated string.
For example: "mytestheader1,mytestheader2" or
"mytestheader1 mytestheader2".
This is only enabled when "Cloverleaf Request
Forward" is selected.

Cloverleaf Forward Headers

Raw Server

Port on which to listen.Port

Path of URL on which to listen. For example, "/raw".Context Path

Combo box: PATH, NULL.Cloverleaf TrxId Determination

Default is 30000.Cloverleaf Timeout

When this is selected, the HTTP request headers
from the inbound thread are removed to avoid in-
terfering with and overriding the information set
by the next outbound thread.
This does not happen when their names are listed
in "Cloverleaf Forward Headers".
Otherwise, the HTTP request headers will interfere
with the next outbound thread.

Cloverleaf Request Forward

This assists in the selection of the HTTP request
header name list from the inbound thread to be
forwarded to the next outbound thread.
This is a comma or space separated string.
For example: "mytestheader1,mytestheader2" or
"mytestheader1 mytestheader2".
This is only enabled when "Cloverleaf Request
Forward" is selected.

Cloverleaf Forward Headers

Provides a list of headers to send/override in out-
bound response.

Response Header Overrides

Infor Cloverleaf Application Adaptor Web Services User Guide | 59DRAFT

CAA-WS IDE properties GUI

DescriptionFieldItem

Boolean to enable detailed checks of the outbound
message. It is CPU intensive and should only be
enabled in development to check for coding errors,
as it slows production systems.
This checks the outbound message content against
the MESSAGE/PAYLOAD setting. The USERDATA
keys look for incorrect keys, a SOAPAction overrid-
den as a header, and other common mistakes.
It tries to build a list of the probable mistakes being
made in an outbound message and put that list in
the process+ log.
Default value is false.
Note: All other protocols inherit this from the Bus.
A Raw Handler does not have a connection to the
Bus. It has this setting separate.

Message Validation Check Mode

This enables RawHandler to compress the inbound
and outbound messages.
This option has an additional Minimum GZIP Size
condition. Only message sizes greater than this
value are compressed.
Default value is 4096 bytes.

Enable GZIP Encoding

Engine

IP of network interface on which to listen. Blank
indicates "all."

Host

Must be unique from other engines.Port

Default is 5.Minimum Threads

Default is 15.Maximum Threads

Group of settings for TLS support.TLS Server Parameters

Combo box - SSL, TLS, TLSv1, TLSv1.1, TLSv1.2.
Note: To use TLSv1.1 or TLSv1.2, the process must
be running within a Java 7 JVM. Cloverleaf 6.1 and
above already run Java 7.
For earlier releases, see the Cloverleaf Java Driver
documentation for information on how to use your
own JVM in a Java Driver thread.

- Secure Socket Protocol

JKS, JCEKS, PKCS12- Keystore Type

Password for the entire keystore.- Keystore Password

Infor Cloverleaf Application Adaptor Web Services User Guide | 60DRAFT

CAA-WS IDE properties GUI

DescriptionFieldItem

Absolute or relative path from the thread's working
directory.

- Keystore Path

Password for keys within the keystore.- Keystore Key Password

JKS, JCEKS, PKCS12- Truststore Type

Password for the entire truststore.- Truststore Password

Absolute or relative path from the thread's working
directory.

- Truststore Path

A comma-separated list of supported cipher suite
names. This cannot be combined with the cipher
suites filter.

- Cipher Suite

A comma-separated list of regular expressions
matching cipher suite names to include. This can-
not be used with the Cipher Suite list.

- Cipher Suites Filter Include

A comma-separated list of regular expressions
matching cipher suite names to exclude. This can-
not be used with the Cipher Suite list.

- Cipher Suites Filter Exclude

Boolean: Indicates if mutual authentication is re-
quired. This is also know as Client Authentication.

- Client Authentication Required

Boolean: Indicates if mutual authentication is
wanted. This is also know as Client Authentication.

- Client Authentication Wanted

Bus
This works on
clients and
servers.

Only affects SOAP Clients/ServersWS-Addressing

Boolean - Only enabled if WS-Addressing is enabled- Allow Duplicates

Boolean - Only enabled if WS-Addressing is enabled- Addressing Required

Enables CXF message logging for all components
except Raw Servers.
Note: The default size limit at which messages are
truncated in the log is 102400.

Logging

Infor Cloverleaf Application Adaptor Web Services User Guide | 61DRAFT

CAA-WS IDE properties GUI

DescriptionFieldItem

Boolean to enable detailed checks of the outbound
message. It is CPU intensive and should only be
enabled in development to check for coding errors,
as it slows production systems.
This checks the outbound message content against
the MESSAGE/PAYLOAD setting. The USERDATA
keys look for incorrect keys, a SOAPAction overrid-
den as a header, and other mistakes.
It tries to build a list of the probable mistakes being
made in an outbound message and put that list in
the process log.
Default value is false.

Message Validation Check Mode

Message validation check mode
Mistakes can be made when composing a CAA-WS message in Cloverleaf. For example, building your USERDATA
in Tcl with a bad key value or sending a SOAP Envelope to a PAYLOAD mode thread. A message validation check
mode is available to run checks on your messages. This is configured for all protocol types on the Bus, except
Raw servers.

If left blank, then the default is "false." Raw handlers have the same configuration option directly on their
configuration screen.

You should be careful to only enable this during development. The validation checks can consume significant
CPU resources. After the bugs are removed from the user's code, there is no necessity to run the checks in
production.

These checks are performed:

• For a SOAP client, do a MESSAGE/PAYLOAD check by checking the first XML start element. Check its QName
to see if it is in the SOAP namespace with the local name "Envelope."
• If the first element is a SOAP Envelope and the client is in PAYLOAD mode, then it is an error.
• If the first element is not a SOAP Envelope and the client is in MESSAGE mode, then it is an error.

• For a SOAP server, do a MESSAGE/PAYLOAD check the same as for the SOAP client.
• UserData override checks. These tables show all overrides.

USERDATA is checked for any keys not on this list, or in the nested lists.
The REQUIRED CONTENT column lists the checks on individual keys. Keys that are only valid in certain modes
are flagged as an error in other modes.

Infor Cloverleaf Application Adaptor Web Services User Guide | 62DRAFT

CAA-WS IDE properties GUI

Client overrides
This table lists the client overrides:

ModesRequired content if presentField

ALLThis contains a map of all the
HTTP request headers

httpRequestHeaders

HTTP request headers can some-
times have arbitrary names. Oth-
ers have well-known special
meanings. For example, Content-
Length, Content-Type, User-
Agent, and Host. The header name
is the key and the header value is
the value in the map. Case does
not matter. Special checks:
• You should not attempt to

override the SOAPAction
header here. Check if that has
been attempted.

• Setting Content-Type fail
when sending attachments,
as CXF controls the Content-
Type header. In this instance,
check that is not the case.

– *

ALLThis contains a map of fields per-
mitting further overrides regard-
ing the HTTP request.

httpRequestInfo

Must be one of: GET, POST, PUT,
HEAD, DELETE, OPTIONS, TRACE,
CONNECT.

– method

Full URL, excluding the query
string.

-- requestURL

The portion of the URL after the
port. For /raw/customer, check
that it leads with a slash and does
not have a query string. If a reque
stURL is provided, then this field
is ignored. In this case warn the
user.

-- path

The content here is arbitrary, al-
though one confusion is leading
with a question mark. Ensure this
is not the case.

-- query

Infor Cloverleaf Application Adaptor Web Services User Guide | 63DRAFT

CAA-WS IDE properties GUI

ModesRequired content if presentField

SOAPShould be a URI, check that it can
be parsed as such.

-- soapAction

SOAP RESTtrue or false-- oneWay

This contains a map.-- tls

Get KeyManager from HTTPCon-
duit and verify this is a valid key.

--- certAlias

This contains a map.-- authorization

Can be any string.--- user

Can be any string.--- password

Basic, Digest, or Negotiate; case
insensitive.

--- type

SOAP RESTMap of all attachments to be sent.attachments

Each attachment is itself a nested
map of its components where the
key is the identifier for the attach-
ment.

-- *
This is an identifier.

true or false--- xop

A further nested map containing
the headers to override for the at-
tachment.

--- headers

The header names are the keys in
this map, with the header values
being the values in the map. The
same as with httpRequestHeader
s. Content-Type header defaults
to application/octet-stream if no
value is provided.

--- *

Base64 encode your attachment
content to be sent here. This field
or contentFile field is required.
Check that it is valid base64 con-
tent. Ensure contentFile is not
also present.

--- content

Infor Cloverleaf Application Adaptor Web Services User Guide | 64DRAFT

CAA-WS IDE properties GUI

ModesRequired content if presentField

File name for a file containing the
attachment content. It is not nec-
essary to make a special check if
the file exists. This error is noted
when it attempts to send the at-
tachment. Ensure content is not
also present.

--- contentFile

SOAPWS-Addressing information.wsa

Check that this can be parsed as
URI.

-- action

Check that this can be parsed as
URI.

-- replyTo

Check that this can be parsed as
URI.

-- to

Can be about anything.-- messageId

Check that this can be parsed as
URI.

-- from

Check that this can be parsed as
URI.

-- faultTo

ALLNothing to check here, so must let
it proceed into CL and get an error
there.

trxid

SOAPWS-Security map.wss

Technically, any value is permit-
ted. At this point all values start
with ws-security, except for org
.apache.cxf.ws.security.tokens
tore.TokenStore. If these cases
are found, then the user is warned
if the value found does not match.

*

SOAP RESTIf there are multiple dispatches
configured in the client configura-
tion, then assign a dispatch NAME
to this field in USERDATA. This
tells the client which dispatch to
pick for the message.
Additional information is available
for dispatch. See REST.

dispatch

Infor Cloverleaf Application Adaptor Web Services User Guide | 65DRAFT

CAA-WS IDE properties GUI

ModesRequired content if presentField

RAWIf there are multiple raw con-
sumers configured in client config-
uration, then assign a consumer
NAME to this field in USERDATA.
This tells the client which one to
pick for the message.

webClientFactory

Server overrides
This table lists the server overrides:

ModesRequired content if presentField

ALLIntegerhttpResponseCode

ALLThis contains a map of all the
HTTP response headers.

httpResponseHeaders

HTTP response headers can
sometimes have arbitrary names,
but others have well-known spe-
cial meanings. Special checks:
Setting Content-Type here fails
when sending attachments, as
CXF controls the Content-Type
header. In this instance, check
that is not the case.

-- *

SOAP RESTMap of all attachments to be sent.attachments

Each attachment is itself a nested
map of its components. where the
key is the identifier for the attach-
ment. The value you specify here
is used as the ID for the attach-
ment and is set as the Content-ID
header.

-- *
This is an identifier.

true or false--- xop

A further nested map containing
the headers to override for the at-
tachment.

--- headers

Infor Cloverleaf Application Adaptor Web Services User Guide | 66DRAFT

CAA-WS IDE properties GUI

ModesRequired content if presentField

The header names are the keys in
this map, with the header values
being the values in the map. This
is the same as httpRequestHeader
s. Content-Type header defaults
to application/octet-stream if no
value is provided here.

--- *

Base64 encode your attachment
content to be sent here. This field
or contentFile field is required.
Check that it is valid base64 con-
tent. Check that contentFile is not
also present.

--- content

File name for a file containing the
attachment content. It is not nec-
essary to make a special check if
the file exists. This error is already
noted when it tries to send the
attachment. Check content is not
also present.

--- contentFile

SOAPWS-Addressing information.wsa

Check that this can be parsed as
URI.

-- action

Check that this can be parsed as
URI.

-- replyTo

Check that this can be parsed as
URI.

-- to

Can be about anything-- messageId

Check that this can be parsed as
URI.

-- from

Check that this can be parsed as
URI.

-- faultTo

It is rare that this would require
to be overridden. Warn the user
that overriding this is probably a
mistake as the automated han-
dling should put the correct value
there.

-- relatesTo

SOAPWS-Security mapwss

Infor Cloverleaf Application Adaptor Web Services User Guide | 67DRAFT

CAA-WS IDE properties GUI

ModesRequired content if presentField

Technically any value is permit-
ted, but at this point all values
start with ws-security, except for
org.apache.cxf.ws.security.tok
enstore.TokenStore. If these cases
are found, then the user is warned
when the value found does not
match.

*

Infor Cloverleaf Application Adaptor Web Services User Guide | 68DRAFT

CAA-WS IDE properties GUI

Web Services consumer wizard

For the Cloverleaf web services adapter, creating a web services consumer is the most common use case. The
web services consumer wizard simplifies the configuration of WS consumer protocol threads. Tooltips assist
in configuration.

Wizards assist in creating new objects, such as:

• WS-Client protocol thread:
• SOAP Consumer
• REST Consumer
• Conduit

• WS-RawClient protocol thread:
• RAW Consumer
• Conduit

• WS-Server:
• RestProvider
• SoapProvider
• RawHandler
• Engine

Information storage

Extracted schemas are stored in $HCISITEDIR/formats/xml/package.

Installation

The Consumer wizard is installed with Cloverleaf Integration Services and enabled by a license key.

SOAP, REST and RAW basics
SOAP is used to send SOAP 1.1 or SOAP 1.2 messages. There are many possible options and overrides with
SOAP messages.

With SOAP, there are two options for a provider to use:

• The PAYLOAD option means that the system only deals with the contents of the SOAP body. This is the
payload.

Infor Cloverleaf Application Adaptor Web Services User Guide | 69DRAFT

Web Services consumer wizard

• The MESSAGE option means that the system works with the entire SOAP envelope. This is the entire message.

REST is used for services that send/receive only XML data. In other contexts, a service is said to be RESTful,
regardless of whether the content is XML.

The Raw feature permits a client to act as a basic HTTP client. It sends and receives any sort of data, including
multi-part, by constructing the exact message to be sent and specifies any HTTP headers. Similarly, a raw
server is an HTTP server with few expectations of content. It can receive any type of data, including multi-part,
and send anything back.

User interface
In the Wizard's ws-client, ws-rawclient, ws-server configuration GUIs:

• Configuration objects are shown in a tree view, to reflect their internal relationship.
• The property panel shows all the configurations for a single object.
• Configurations are split into several sections and have their own tabs
• Objects can be created step-by-step with the wizard.

In the server thread, each SOAP/REST provider and raw handler must have a parent engine object. New
providers and handlers are located under the corresponding engine node with the same port number. This
does not change the XML structure; it only shows the relationships.

For example, selecting thejava/ws-client protocol on the Network Configurator opens the WS-Client dialog
box. Clicking New opens the WS-Client wizard.

Tooltips are available for parameters that might require further explanation, such as Service or Port in SOAP.

The Type Selection page is where you select which consumer to create. Select from SOAP Consumer, REST
Consumer, or Conduit.

SOAP Consumer

The SOAP Consumer wizard walks you through selecting a WSDL by:

• Extracting and compiling schemas if necessary.
• Creating all properties to create a SOAP Consumer.
• Automatically adding a SOAP envelope if required.

The conduit is automatically created. Options include:

• Setting security parameters in a single dialog box.
• Setting client parameters, such as proxy, username, and password, on another screen.

REST Consumer

The RESTful/Raw wizard walks you through creating all properties to create a RESTful or RAW Consumer.

Note: The RESTful Client is not used, as XML validation is not necessary for the majority of use cases.

Infor Cloverleaf Application Adaptor Web Services User Guide | 70DRAFT

Web Services consumer wizard

The conduit is automatically created. Options include:

• Setting security parameters in a single dialog box.
• Setting client parameters, such as proxy, username, and password, on another screen.

Building a SOAP Consumer
To create a SOAP Consumer, start by creating a new soap_1 thread.

Then, follow these steps:

1 On the Network Configurator, select java/ws-client as the protocol. The WS-Client wizard displays the
Type Selection page.

2 Select Create SOAP Consumer, and click Next to walk through the wizard steps.

WS-Server

When a tree node is selected, the configuration panel displays its configuration. The tree view lists the nodes
of the existing Engines, Providers and RawHandlers.

There can be multiple Engines, Providers and RawHandlers.

If some Providers/Handlers have the same port number in the address, then these nodes are displayed under
the Engine node of the same port number.

Each SOAP/REST Provider and RawHandler must have a parent Engine object.

Editing

Click New to open the wizard for adding a new Engine, SoapProvider, RestProvider, or RawHandler.

When you select an Engine node and click Duplicate, the Engine node and its sub-nodes are copied as new
nodes. They use the same configuration as the selected node. This is enabled only when nodes are selected,
but not applicable to the Bus node.

You can drag and drop the SOAP/REST Provider and Raw Handler nodes to put them into other Engine nodes.
Their port and address fields are updated.

Delete removes the currently selected node and its sub-nodes from the view.

Note: The key fields of duplicated nodes, such as the Engine Port and Rest Provider address, are automatically
assigned new values to avoid conflicts. For example, adding 1 to the port number or appending _new to the
address.

Infor Cloverleaf Application Adaptor Web Services User Guide | 71DRAFT

Web Services consumer wizard

XSD WSDL tool
The XSD WSDL Tool is integrated in the IDE as a wizard. The wizard guides you in generating and compiling
the XSD file, and generating the WSDL file from the XSD file.

The wizard can also generate the WS-Policy by consuming an existing WSDL, if it is provided.

User interface

The wizard contains several dynamic pages. The usage of "dynamic" indicates providing different arguments.
This selects different pages as the starting finishing points for different purposes.

For example, to only add Policy to an existing WSDL file, specify the WSDL URL/file-path and specify Add-WS-
Policy to start. This would only show the steps for Policy Generation.

The CAA-WS Server and Client thread protocol dialog box can launch this tool for WSDL generation, Policy
generation, and others. The XML Package Manager has several enhancements to take advantage of this tool.
In this way, CAA-WS users can finish the task of WSDL file management and XSD compilation.

The first wizard page lists all the available operations according to the user-selected file.

Information storage

The generated files are stored in the host server.

XSD and WSDL file are stored at the site level. You can specify a sub-folder under this path, such as <%HCI
ROOT%>\<%SITEDIR%>\formats\xml\.

The generated file is based on template files, such as XSD template and WSDL template. When the host server
receives the generate request from the IDE, it loads the template file and fills the placeholder in the template.
Then, it generates the file.

Selecting a WSDL file as input file
When you select a WSDL file and launch the wizard, you can generate an XSD file according to the WSDL file.
You can also add WS-Policy to the WSDL file.

When you launch the wizard, the GUI first gets the WSDL configuration from host server. After this, it completes
the components with the WSDL configuration. Then, you can then specify parameters, and then submit the
generate request to the host server.

When the host server receives the generate request, it loads the template files and assigns the variables with
user-specified parameters. Then, it generates the file and returns the generate details to the client.

Infor Cloverleaf Application Adaptor Web Services User Guide | 72DRAFT

Web Services consumer wizard

Selecting an XSD file as input file
When you select an XSD file and launch the wizard, you can generate another XSD file or generate a WSDL
file. This is according to the XSD file.

When you launch the wizard, the GUI first gets the XSD definition from the host server. After this, the GUI
completes the components. You can then select types that are defined in the XSD file as input and output
elements. After this, you can submit the generate request to the host server.

When the host server receives the generate request, it loads the template files and assigns the variables with
user-specified parameters. Then, it generates the file and returns the generate details to the client.

WS-Client and WS-Server nodes
The tree lists nodes for SOAPConsumer, RESTConsumer, and Conduit.

• There is no Engine node. All nodes are on the same level.
• There can be multiple Conduits and REST/SOAP Consumers.

The WS-RawClient tree lists nodes for RawConsumer and Conduit. There can be multiple Conduits and
RawConsumers.

This table lists the WS-Client and WS-Server nodes:

DescriptionNode

This node can have multiple providers. If the port
number in the address has been changed, then the
system checks if there are any Engines with the same
port. If there is a match, then the provider is put un-
der the corresponding Engine node.

WS-Server RestProvider

This node is similar to Rest Provider for Enginws-
server soap provider node port change logic. The
Policy Properties tab is only available when WSDL
has policy settings.

WS-Server SoapProvider

This node's configuration items are:
• Context Path
• Cloverleaf TrxID Determination
• Cloverleaf Timeout
• Message Validation Check Mode Enabled
• Response Header
• Overrides

WS-Server RawHandler

Infor Cloverleaf Application Adaptor Web Services User Guide | 73DRAFT

Web Services consumer wizard

DescriptionNode

Note: This is applicable only in WS-Server.
Multiple engine nodes can be added to the tree after
the port is set. Other providers that have the same
port number in Address automatically go under it.
Any changes to the engine host, port, and TLS setting
update the address of other providers that are under
it.
If the port is not specified in Address, then the
provider is automatically under the engine. Port 80
is listed for HTTP. Port 443 is listed for HTTPS.
Note: Server providers do not work for default
HTTPS ports. Providers with HTTPS addresses must
set the port to include port 443.

WS-Server Engine

WS-Client conduit configuration
Specify an expression to be matched against the various clients that exist in your configuration file.

See Conduit on page 40 for a description of conduit names.

The first page of the WS-Client Creating Wizard defines two modes of message delivery:

• Asynchronous
• Synchronous

To configure the WS-Client conduit:

1 Select ws-client and click Properties.
2 On the WS Client dialog box, click Add to start the wizard.
3 On the initial wizard page, select Create Conduit and click Next.
4 Specify the Name of the conduit. See Conduit on page 75.
5 If TLS Secured is selected, then the next page contains Secure Socket Protocol, Key Store, and Trust

Store configuration items. A Test button displays when TLS Secured is selected.
6 Click Next to configure proxy settings.
7 Click Finish to complete the configuration.

Use one of these formats for the expression:

• A regular expression to match a URL.
For example, http://somehost:port/url*. This indicates that the conduit can associate with the clients
whose address is http://somehost:port/url, or a subset of that path.

• <soap port>.http-conduit

Infor Cloverleaf Application Adaptor Web Services User Guide | 74DRAFT

Web Services consumer wizard

For example, {urn:ihe:iti:xds-b:2007}DocumentRegistry_Port_Soap12.http-conduit. This indicates the
conduit associates with the SOAP clients whose port is {urn:ihe:iti:xds-b:2007}DocumentRegistry_Port_
Soap12.

• *WebClient.http-conduit

The conduit associates with all Raw clients.

• *.http-conduit

The conduit associates with all clients.

Conduit
A conduit is used to set HTTP connection details. For example, a conduit can put TLS on the connection, add
HTTP basic authentication, proxy settings, and time-out settings.

The conduit uses a single name attribute that specifies an expression to be matched against the various clients
that exist in your config file. This attribute can have one of these formats:

• A regular expression to match a URL.
For example: http://somehost:port/url*.
This indicates the conduit can associate with the client whose address is http://somehost:port/url, or
some subset of that path.

• <soap port>.http-conduit

For example: {urn:ihe:iti:xds-b:2007}DocumentRegistry_Port_Soap12.http-conduit.
This indicates the conduit associates with the SOAP clients whose port is {urn:ihe:iti:xds-b:2007}Doc
umentRegistry_Port_Soap12

• *WebClient.http-conduit

The conduit associates with all Raw clients.

• *.http-conduit

The conduit associates with all clients.

A REST client uses this order until it locates the matched conduit:

1 Locate a conduit whose name is a URL regular expression and matches the address of the REST client.
2 Locate a conduit whose name is *.http-conduit.

A SOAP client follows this order until it locates the matched conduit:

1 Locate a conduit whose name is a URL regular expression and matches the address of the SOAP client.
2 Locate a conduit whose name is a Port format and matches the port of the SOAP client.
3 Locate a conduit whose name is *.http-conduit.

A Raw client follows this order until it locates the matched conduit:

1 Locate a conduit whose name is a URL regular expression and matches the address of the Raw client.
2 Locate a conduit whose name is WebClient.http-conduit.

Infor Cloverleaf Application Adaptor Web Services User Guide | 75DRAFT

Web Services consumer wizard

3 Locate a conduit whose name is *.http-conduit.

For access, if the current Consumer URL is HTTPS, then it must have a Conduit that is configured with TLS.

If an existing conduit matches, then it can be directly used. You are not required to create a conduit. Otherwise,
a new conduit with TLS must be created to ensure the HTTPS Consumer functions properly.

By default, when creating a new conduit, Name is populated with the URL from the Consumer address, with
an asterisk at the end. For example, http://somehost:port/url*.

WS-Client SOAP Consumer configuration
The first page of the WS-Client Creating Wizard defines the two modes of message delivery:

• Asynchronous
• Synchronous

To configure the WS-Client SOAP Consumer:

1 Select ws-client and click Properties.
2 On the WS Client dialog box, click Add to start the wizard.
3 On the initial wizard page, select Create SOAP Consumer and click Next.
4 On the next page, configure the Service, Port, Service Mode, and Address.
5 To generate an XSD, specify the necessary information and click Generate and Compile Target XSDs.

Otherwise, click Next to skip the generation.
• All schemas are imported from the WSDL file.
• Operation selects the first item by default. The field Target XSD filename is updated according to

the operation selection.
• By default, Soap Header Preference selects Any headers are allowed.
• Click Generate and Compile Target XSDs to generate and compile the XSD from the current WSDL.
• XSDs are generated under $HCISiteDir/formats/xml/{THREADNAME}/ using the names {OPERATION_

NAME}_input.xsd and {OPERATION_NAME}_output.xsd.
• The Results area shows the output and errors after generating the XSD.
• Click Next to skip the Generating and Compile Target XSDs step.

6 The remainder of the pages are used for setting up the Conduits. You can specify whether to Create New
Conduit or Do Not Create New Conduit.See Conduit on page 75. If the URL address of the current
Consumer is HTTPS, then Create New is selected by default.
A URL pattern. For example, http://somehost:port/url*.
When a matched conduit is located, the name is displayed in the Conduit Matched read-only text field.
Do Not Create New Conduit is selected by default. You can click Test to verify that the current consumer
can TLS socket connect with the server.
The HTTP sites must specify TLS on the conduit. See TLS Secured on the conduit on page 41.

7 The next TLS page is shown only if TLS Secured is selected on the previous page.
• Service Socket Protocol is set to TLSv1.2 by default. It contains SSLv3, TLS, TLSv1, TLSv1.1 and

TLSv1.2.

Infor Cloverleaf Application Adaptor Web Services User Guide | 76DRAFT

Web Services consumer wizard

• Common Name Check is selected by default. This is used for checking whether the DNS name from
the server address matches the name from the license.

• All other fields in the above page are empty by default.

8 The next page is used for setting up a Conduit's client settings: Proxy & HTTP Authentication.
• Proxy

Service and Port must be specified if the service is required to be accessed through Proxy.
Type is HTTP by default.

• Proxy HTTP Authentication
Username and Password must be specified if the Proxy authentication is required.
Authentication Type is Basic by default. See SPNEGO.

• HTTP Authentication
Username and Password must be specified if the HTTP authentication is required.
Authentication Type is Basic by default. See SPNEGO.

All other fields are empty by default.

WS-Client REST Consumer configuration
A REST client follows this order until it locates the matched conduit:

1 Locate a conduit whose name is a URL regular expression that matches the address of the REST client.
2 Locate a conduit whose name is *.http-conduit.

When finding a matched conduit, the name is displayed in the Conduit Matched read-only text field.

Do Not Create New Conduit is selected by default. A Test button displays to test if the current consumer can
TLS socket connect with the server.

By default, if Create New Conduit is selected, then the Name is populated with the URL from the Consumer
address with an asterisk at the end. For example, http://somehost:port/url*.

Note: The HTTPs must specify TLS on the Conduit. See TLS Secured on the conduit on page 41.

The TLS Secured default value depends on the Consumer URL type.

By default, this is cleared and disabled when the address of the consumer is an HTTP URL.

By default, this is enabled and selected when the address is an HTTPS URL.

WS-Client Creating Wizard

The first page of the WS-Client Creating Wizard defines the two modes of message delivery:

• Asynchronous
• Synchronous

To configure the WS-Client REST Consumer:

Infor Cloverleaf Application Adaptor Web Services User Guide | 77DRAFT

Web Services consumer wizard

1 Select ws-client and click Properties.
2 On the WS Client dialog box, click Add to start the wizard.
3 For REST Consumer, only the Address is required.
4 The remainder of the pages are used for setting up Conduits. You can specify whether to Create New

Conduit or Do Not Create Conduit. If the URL address of the current Consumer is HTTPS, then Create
New Conduit is selected by default.
Conduit Name expression to match the client can be:
• A URL pattern. For example, http://somehost:port/url*.
• Match only webClients (raw). For example *WebClient.http-conduit.
• A specific Soap Port name.
• All clients. For example, *.http-conduit.
If Create New Conduit is selected, then Name is filled with {consumer_address_host_ip}.http-conduit
by default.

5 The TLS page is shown only if the TLS Secured is selected on the previous page.
• Service Socket Protocol is set to TLSv1.2 by default. It contains SSLv3, TLS, TLSv1, TLSv1.1

andTLSv1.2.
• Common Name Check is selected by default. This is used for checking whether the DNS name

fromthe server address matches the name from the license.
• All other fields in the above page are empty by default.

6 The next page is used for setting up the conduit client settings (Proxy & HTTP Authentication).
• Proxy

Service and Port must be specified if the service is required to be accessed through Proxy.
Type is HTTP by default.

• Proxy HTTP Authentication
Username and Password must be specified if the Proxy authentication is required.
Authentication Type is Basic by default. See SPNEGO on page 80.

• HTTP Authentication
Username and Password must be specified if HTTP authentication is required.
Authentication Type is Basic by default. See SPNEGO on page 80.

All other fields are empty by default.

WS-RawClient wizard flow
Conduit configuration is similar to the WS-Client.

The first page of the WS-RawClient Creating Wizard defines the two modes of message delivery:

• Asynchronous
• Synchronous

The current message delivery mode is listed at the bottom of the page.

Infor Cloverleaf Application Adaptor Web Services User Guide | 78DRAFT

Web Services consumer wizard

In the remainder of the wizard:

• The name field is specified with letters only, no spaces. This is optional if there is only one WebClient
Factory in a configuration file. If there are multiple instances of WebClient Factory, then the name fields
are required and must be specified in the invocation from Cloverleaf.

• Address is required.
• Default Method is selected from a list of: GET, POST, HEAD, PUT, DELETE, OPTION, TRACE, and CONNECT.
• When Next is clicked, you can select from Create New Conduit or Do not Create New Conduit. These

are the same as that for WS-Client REST/SOAP Consume with exceptions.
A Raw client follows this order until it looks up the matched conduit:
1 Locate a conduit whose name is a URL regular expression and matches the address of the Raw client.
2 Locate a conduit whose name is “*WebClient.http-conduit”.
3 Locate a conduit whose name is “*.http-conduit”.

Infor Cloverleaf Application Adaptor Web Services User Guide | 79DRAFT

Web Services consumer wizard

SPNEGO

SPNEGO is necessary when using Tcl scripts to communicate with the CIS 6.2 web API end-point to enable/disable
some config options.

A SPNEGO Authentication Type option is available in the WS Client GUI.

SPNEGO provides authentication mode support in CIS, so that CIS can access web services over RET end point
with a logged-on user context.

A Negotiate option is on the Authentication Type list in the CAA-WS WS-Client wizard. Additional options
are Basic and Digest.

Note: Although the type is Negotiate, it is SPNEGO/kerberos in the background.

Properties for Negotiate include the JAAS krb5 login module configure file and the Kerberos configure file to
assign to JVM system properties. The latter can usually be generated by Kerberos tool kits on different
platforms.

WS-Client adapters can be used in REST mode to communicate with the internal web service for any data
update or insert.

This communication is secured and needs authentication. Because AD (Active Directory) is used-based on
user authentication, the WS adapter supports SPNEGO mode to work with AD.

Infor Cloverleaf Application Adaptor Web Services User Guide | 80DRAFT

SPNEGO

Scheduler node

The WS-Client and WS-Raw Client protocols have a scheduler node. When the node content is populated, the
thread functions in a time-event-driven mode.

The protocols function as inbound by querying services in cycling instead of the outbound mode. The outbound
mode requires Cloverleaf outbound messages to trigger.

Under the node, you can set up a series of events. When any of the events become active, all consumers that
are configured in the thread are triggered.

A thread can also trigger all of its clients for the first time immediately after it is started. This uses the same
convention as all other CIS protocols that support scheduling mode.

The scheduler configuration directly loads and saves the configuration in the SCHEDULE key of the NetConfig
file.

On the CAA-WS IDE properties GUI, only one scheduler node is on the left panel of the WS-Client/WS-Raw
Client. This cannot be deleted or copied.

Selecting the scheduler node opens the Scheduler configuration panel.

On the event toolbar:

• Click New to add an empty row at the end of the event table after the existing events are validated.
• Click Delete to remove the selected event row.

Scheduler panel

Event Table entries consist of editable Description and Recurrence columns.

In the Description column, you can specify an event name to be sent to a log file if the event causes an error.

In the Recurrence column, you can specify a time for the event to occur. You can specify a CRON expression in
the text field. Clicking the detail button open the Time Properties dialog, where you can configure expressions.

The Time Properties dialog box has these fields:

• Seconds
• Minutes
• Hours
• Days of Month
• Months
• Days of Week

A valid event must have description and recurrence values.

Infor Cloverleaf Application Adaptor Web Services User Guide | 81DRAFT

Scheduler node

Information storage

The scheduler configuration is saved in the SCHEDULE key of the NetConfig file as:

 { SCHEDULE {
 { EVENT1 {
 { ARGS {} }
 { CRON {0 0 8 * * *} }
 { DESCR {8am every day} }
 { PROCS {} }
 { PROCSCONTROL {} }
 } }
 } }

When Scheduler is selected on the WS Client, Description and Recurrence are populated with the schedule.

Additional configurations

To enable time-event-driven mode after saving scheduler events, add TIMEMETHOD=doTimeEvent configurations
to %HCISITEDIR/thread_name.ini.

To disable time-event-driven mode after saving scheduler events, delete TIMEMETHOD=doTimeEvent events from
%HCISITEDIR/thread_name.ini.

Java driver protocol notes

There is no new key in %HCISITEDIR/thread_name.ini because Java Driver has a timed mode..

In the Java Driver Protocol Properties dialog box, the time method doTimeEvent must be selected. When
this is selected, the interval times or advanced scheduling can be set.

Conversely, when doTimeEvent is selected, the interval or advanced scheduling must be specified as “Time
Method Options”.

These configurations add TIMEMETHOD=doTimeEvent in %HCISITEDIR/thread_name.ini and QUERY_INTERVAL or
SCHEDULE settings in NetConfig.

Infor Cloverleaf Application Adaptor Web Services User Guide | 82DRAFT

Scheduler node

Web Services security

The Security testing and validation tool provides a means to connect to a defined web service provider. It
also tests the security configuration without having to run the engine.

This tool can be used for a connectivity test if the web service is configured as a Consumer. It can verify that
the Consumer can successfully connect to the provider using the configured security settings.

User interface
The web services security user interface contains a testing dialog box for web services security settings. You
can run a validation and connectivity test, and review the returned results.

For a web services Consumer, you can enable TLS and configure it in an HTTP Conduit. After this, the SOAP
Consumer, RESTful Consumer, or RAW Consumer can use the TLS configuration. The Consumer must match
the name field previously configured in the HTTP Conduit.

The Test Tool verifies that the TLS settings of the HTTP conduit are configured correctly. The test tool attempts
to use the configured client to connect to the server side for testing connectivity. It tests the connection that
is from the host server to a server side.

For a web services Provider, you can enable TLS and configure it in an engine (Jetty). After it is configured,
the SOAP provider, RESTful provider or RAW provider can use the TLS configuration. The Certificate Manager
generates, imports, or export keys.

Testing
A Test button is on the last page of Consumer wizard if the consumer has a matched conduit with the TLS
setting. Clicking Test starts an RMI invocation for testing in the host server.

Note: There is no Test button for HTTP addresses.

After the test is started, the Test Tool in the host server connects to the server to verify the connection.

The web service provider provides the certificate as its own when doing the handshake. On the client side,
the Test Tool adds this certificate to the trust store that is based on your selection.

Infor Cloverleaf Application Adaptor Web Services User Guide | 83DRAFT

Web Services security

A Confirmation dialog box opens to verify your action. It contains a list with check boxes, all checked by
default, to let you determine which certificates to import. Clicking OK imports the selected certificates to the
trust store.

The server certificates display as a chain to indicate the relationship. Double-clicking a certificate shows its
detail information.

If a provider requires verification of client identity, and the client does not have the certificate,then the testing
fails.

Then, the Test Tool informs you if any certificates are missing that are required by the provider. These are
the certificates that you must have for exporting the client certificate from the keystore and have the server
trust it.

Certificate manager
Certificate Manager can generate certificates into a JKS Keystore. The File > Issue JKS certificates option
opens a wizard for generating JKS store and certificate.

When you specify user information, validation date, and the key and keystore passwords, Certificate Manager
generates a keystore in $HCIROOT/server/certs/store.

The Store tab lists all keystores in $HCIROOT/server/certs/store. The certificates in keystore also display in
this list. This contains Name, Expiration date, and Issued by columns.

You can import the client certificates into the key store by right-clicking a keystore to open a file chooser. In
the file chooser, you can select a certificate file that you can import into this keystore.

Export the server certificates to a file by right-clicking a certificate to export.

Double-click a certificate to view its information.

Non-mode Cloverleaf disables other functions of Certificate Manager, except Issue jks keystore and the
Store tab.

If Cloverleaf is in non-mode, then you can sign a certificate without a CA certificate (self-sign).

Web services security use case
A user has configured the security entries in a web services connection. The user employs the web services
security user interface to verify the connection settings before saving the configuration.

The tool prompts a message that the trust store is incorrectly configured. It is missing a certificate required
for the trust chain to function correctly. The user adds the certificate to the trust store and runs the test again,
where it reports a success.

Infor Cloverleaf Application Adaptor Web Services User Guide | 84DRAFT

Web Services security

Usage scenario

This section describes the different flows that you can use to develop applications that run on CAA-WS.

For a description of the overall functionality of the CAA-WS, see:

• CAA-WS on page 10
• Architecture and flow on page 12

Intended users
For best results, suggested users for this component are:

• Normal users: These are users who follow samples and configuration guidelines and apply business logic
in typical system application development methodology. In general, Tcl API in UPoCs is used to employ
existing system functionality.

• Power users: These are users who customize processing at the web services protocol level or deal with
advanced web services topics, such as WS Security. Power users are comfortable programming in both
Tcl and Java, and have a deep understanding of how certain open source Java Web Services technology
works. For example, CXF.

Note: All users must be familiar with system implementation methodologies.

Basic flow
When building an application using the bundled Providers (server) or Dispatches (client), the CAA-WS user’s
main tasks are contained in these steps:

1 Create a Cloverelaf site and add a CAA-WS java/ws-* protocol thread.
2 Gather the necessary artifacts to configure your service or client.

These could be keystores/truststores for doing secure communications, WSDL files for SOAP services,
URLs for services you must invoke, and so on.

3 Use the Properties dialog box to configure your thread with the artifacts that are collected in the previous
step.

4 Create the Tcl UPoCs that have the business logic of processing (server) or generating (client) request
usage content.

Infor Cloverleaf Application Adaptor Web Services User Guide | 85DRAFT

Usage scenario

To create Tcl UPoCs in Cloverleaf to process messages using the API, see Application Programming
Interface (API).

Alternate flow: Normal users
These procedures illustrate how you can build web services clients or servers using different protocols.

Web Service SOAP client: payload
This is the same as the "Basic flow" topic, except that it creates a web service SOAP client that uses Payload
mode.

See Basic flow.

1 Create a Cloverelaf site and add a CAA-WS java/ws-* protocol thread.
2 Gather the necessary artifacts to configure your service or client. These could be keystores/truststores

for doing secure communications, WSDL files for SOAP services, URLs for services you must invoke, and
so on.

3 Use the Properties dialog box to configure your thread with the artifacts that were collected in the
previous step.

4 Create a UPoC that creates the payload of the SOAP message, and another UPoC that processes the
payload of the response SOAP message. These payloads do not include the SOAP Envelope or Body
elements.

Web Service SOAP client: message
Same as Payload version, but creates a web service SOAP client that uses Message mode.

1 Create a Cloverleaf site and add a CAA-WS java/ws-* protocol thread.
2 Gather the necessary artifacts to configure your service or client. These could be keystores/truststores

for doing secure communications, WSDL files for SOAP services, URLs for services you must invoke, and
so on.

3 Configure a SOAP client with Message mode.
4 Create a UPoC that creates the entire SOAP message including the SOAP Envelope, and another UPoC

that processes the response expecting a whole SOAP Envelope.

Web Service RESTful client
This is the same as the "Basic flow" topic, except that it creates a web service RESTful Client.

Infor Cloverleaf Application Adaptor Web Services User Guide | 86DRAFT

Usage scenario

See Basic flow.

1 Select the java/ws-client protocol.
2 Configure a RESTful client.
3 Create a UPoC that creates the RESTful message content to be sent by the client. In CXF’s view, REST

means XML, so this UPoC would be constructing an XML message to send. Create another UPoC to process
the XML response message.

Web Service Raw client
This is the same as the "Basic flow" topic, except that it creates a web service Raw HTTP client.

See Basic flow.

1 Select the java/ws-rawclient protocol.
2 Configure a raw client.
3 Create a UPoC that creates the HTTP content to be sent by the client. This could be a manually created

SOAP message, XML, plain text, an HTML form post, or an image file. It is anything that an HTML client
can send. Create another UPoC to process the response, if any.

Web Service SOAP server: payload
This is the same as "Basic flow" topic, except that it creates a web service SOAP server that uses Payload
mode.

See Basic flow.

1 Select the java/ws-server protocol.
2 Create or locate the WSDL for the service to provide. This could be in the form of an HTTP URL, or you

could copy the WSDL, including XML schema files, to the disk.
3 Configure a SOAP server, with Payload mode.
4 Create a UPoC that processes the payload of the incoming SOAP message, and creates a response payload.

These payloads do not include the SOAP envelope or body elements.

Web Service SOAP server: message
This is the same as "Web Service SOAP server: payload," except that it creates a web service SOAP server that
uses Message mode.

See Web Service SOAP server: payload.

1 Create a Cloverelaf site and add a CAA-WS java/ws-* protocol thread.

Infor Cloverleaf Application Adaptor Web Services User Guide | 87DRAFT

Usage scenario

2 Gather the necessary artifacts to configure your service or client. These could be keystores/truststores
for doing secure communications, WSDL files for SOAP services, URLs for services you must invoke, and
so on.

3 Configure a SOAP server, with Message mode.
4 Create a UPoC that processes the incoming SOAP message including the SOAP envelope, and generates

a response payload including the SOAP envelope.

Web Service RESTful server
This is the same as "Basic flow" topic, except that it creates a web service RESTful server.

See Basic flow.

1 Select the java/ws-server protocol.
2 Configure a RESTful server.
3 Create a UPoC that processes incoming RESTful requests. In CXF’s view, REST means XML, so this UPoC

receives an XML message and creates an XML message in response.

Web Service Raw server
This is the same as the "Basic Flow" topic, except that it creates a web service raw HTTP server.

See Basic flow.

1 Select the java/ws-server protocol.
2 Configure a raw server.
3 Create a UPoC that processes incoming HTTP requests. This could be a SOAP message, XML, plain text,

an HTML form post, or an image file. The raw server can receive anything that an HTML Client can send.
It sends back a response, depending on the nature of the service. As with the client, it could be almost
anything.

Infor Cloverleaf Application Adaptor Web Services User Guide | 88DRAFT

Usage scenario

CAA-WS sample sites

The sample sites are “best practice” tools that are self-contained units. These assist CAA-WS users in
understanding how to employ various parts of the functionality. This section describes the details of these
sites and how they are configured.

Review the sample’s configuration in the NetConfig Properties dialog box and the XML files that are created
for them in the javadriver subdirectory. Then, review the configuration in the NetConfig file, and any relevant
Tcl procs. This, combined with running the samples and observing the logs, provides a basis for starting
projects, testing, and debugging.

Samples are divided into two system sites:

• The primary sample site is ws_samples. This contains basic examples of SOAP, REST, and Raw Clients and
Servers.

• The secondary sample site is ws_adv_samples, which includes:
• In-depth samples requiring longer study to see all the details involved.
• Attachment processing.
• WS-Security usage.
• A pass-through Provider/client pair as an intermediary where a web services request can be

intercepted, modified, and then passed on to the real Provider endpoint.
• FHIR (Fast Healthcare Interoperability Resources) uses JSON/XML RESTful for an

integration/query/response to mobile.

ws_samples

The ws_samples site contains basic usage patterns that illustrate the main functionality of CAA-WS.

In this layout:

• Providers are threads accepting requests, and are on the left.
• Clients are threads sending requests, are on the right side.

By default, the sample clients connect to the sample Providers. The Providers can accept messages from any
client and the clients can be configured to connect to any Provider.

Infor Cloverleaf Application Adaptor Web Services User Guide | 89DRAFT

CAA-WS sample sites

REST
REST is used for services that send/receive only XML data. In other contexts, a service is said to be RESTful,
regardless of whether the content is XML. CXF uses REST to mean XML data, and so it also applies to WS
Adaptor.

A request can be a basic HTTP GET that does not send any XML request, or a POST and sent XML.

In this sample, HTTP GET is used to illustrate this concept. POST is the default, so if you send an XML message,
it is POST-ed.

Provider:

In the RestProvider thread's Inbound tab, the dumpMsg proc is frequently used in the samples. This dumps
the message and then continues the message.

The bounceREST proc does the work to create a response and OVER that message.

This block of code in that proc generates the reply content:

if {[regexp {customers$} $requestPath]} {
 set cont "<customers><customer id='123'/><customer id='234'/></customers>"
} elseif {[regexp {customer$} $requestPath]} {
 set cont "<customer id='123'><name>joe blow</name><address>joe's house</address></customer>"
} else {
 set cont "<unrecognizedVerbInPath/>"
}

This looks in the request path to see if it ends in customers. For example, if you called http://localhost:9001/
RESTTest/customers, the request path is /RESTTest/customers.

• If so, then it returns a list of customers.
• If not, then it sees if it ends in customer (no "s") and returns a specific customer entry.

In actual scenarios, you search the query string for the customer ID and return that.

• If that does not match, then it returns an error element.

The rest of the Tcl proc handles the details of working with the messages. The Provider can be invoked by
the sample client or by a web browser that does HTTP GET operations when you specify a URL. In this way:

• http://localhost:9001/RESTTest/customers returns the list of customers.
• http://localhost:9001/RESTTest/customer?id=123 returns the single customer entry.

The use of a query string is not considered part of the path. The path interpretation works as shown above
in the Tcl because the path is /RESTTest/customer.

For the client, the restClientFile thread is a basic Fileset-Local protocol thread. This watches a directory for
a file to show up and then sends the file to the RestClient thread.

The updateRESTClientMessage Tcl proc sets the USERDATA to set the outbound HTTP method to GET instead of
the default POST, and continues the message.

The update looks similar to this:

update the user data to make it a GET instead of the default POST
 set userData {{dispatch restCustomerClientDispatch} {httpRequestInfo {{method GET}}}}

Infor Cloverleaf Application Adaptor Web Services User Guide | 90DRAFT

CAA-WS sample sites

This also shows how to set the name of the Dispatch in case you had multiple Dispatch entries in the
configuration file. The REST sample has only one, so this is only for demonstration, and is not strictly necessary.

The RestClient dumps the message before it goes outbound to the WS adaptor. Then it dumps the message
that is sent to the system as a reply.

SOAP
SOAP is used to send SOAP 1.1 or SOAP 1.2 messages. There are many possible options and overrides with
SOAP messages.

With SOAP, there are these options for a Provider to use:

• The PAYLOAD option means that the system only deals with the contents of the SOAP Body. This is the
payload.

• The MESSAGE option means that the system works with the entire SOAP Envelope. This is the whole
message.

SOAP Provider (MESSAGE mode)
The SOAPProvider_Registry thread's inbound and reply messages are dumped first and last to see what is
received from and sent to the system. The bounceSOAPRegistry Tcl proc does the work to process the request
and generate a reply message.

The request is a query but for this sample implementation the query content is ignored. An empty response
that says "no documents were found" is sent back as the reply.

The Tcl proc has many lines commented out that show various optional overrides for a SOAP reply.

The reply message is created similar to this:

set cont {<?xml version='1.0' encoding='UTF-8'?><soapenv:Envelope
xmlns:soapenv="http://www.w3.org/2003/05/soap-envelope">
<soapenv:Header/><soapenv:Body><query:AdhocQueryResponse xmlns:query="urn:oasis:names:tc:ebxml-
regrep:xsd:query:3.0"
status="urn:oasis:names:tc:ebxml-regrep:ResponseStatusType:Success"><rim:RegistryObjectList
xmlns:rim="urn:oasis:names:tc:ebxml-regrep:xsd:rim:3.0" /></query:AdhocQueryRe
sponse></soapenv:Body></soapenv:Envelope>}

In this example, the whole SOAP Envelope is created as the message in this MESSAGE mode.

Note: This is configured to listen on http://localhost:9003/xdsregistryb. This is the same as the PAYLOAD
mode configuration. See SOAP Provider (PAYLOAD mode). Therefore, only one of these two can be run at a
time because they listen to the same endpoint.

Infor Cloverleaf Application Adaptor Web Services User Guide | 91DRAFT

CAA-WS sample sites

Editing WS-Addressing
For MESSAGE mode, there are two choice for editing WS-Addressing headers in a message.

• Enable the addressing property in CXF configuration and override different sections in USERDATA.
• Disable addressing property and add them directly into SOAP headers.
Note: Do not add WS-Addressing headers directly in a message when the addressing property is enabled.
Instead, override in USERDATA. Otherwise, CXF appends its default values to your headers.

SOAP Provider (PAYLOAD mode)
In the SOAPProviderPayload_Registry thread's Inbound tab, the bounceSOAPPayloadRegistry Tcl proc ignores
the actual request message. It sends back a canned response. In this case, the canned response has actual
documents listed.

The Tcl proc creates the response message similar to this:

set cont {<query:AdhocQueryResponse ...

Instead of the whole SOAP envelope, it has the contents that go inside the SOAP body.

If SOAP headers are not required, then other than items such as WS-Addressing PAYLOAD mode are used to
deal with basic messages instead of MESSAGE mode.

It is best to use PAYLOAD mode unless you require access to the SOAP headers in the system.

Note: This is configured to listen on http://localhost:9003/xdsregistryb which is the same as for the MESSAGE
mode configuration. Oonly one of these two can be run at a time because they listen to the same endpoint.

SOAP Client
The SOAP client is configured in PAYLOAD mode. The messages do not deal with a SOAP envelope or body.

The registryClientFile thread is a Fileset-Local protocol to get messages from the file system with which
to test. It watches the request directory for files and sends the contents to the RegistryClient thread, putting
the responses in the response directory. To try this, copy the registryQuery.xml file into the request directory
to see it run.

The RegistryClient thread dumps the message before it sends to the WS adaptor and dumps the response
message. There are no other Tcl procs required, as nothing is overridden from the defaults.

This way, the message alone is all that is required to send it. The response is sent back to the registryFile
Client thread and written to the response folder.

SOAP clients should not require any Tcl procs to override defaults after you have the payload to send and
have configured the XML configuration files.

Infor Cloverleaf Application Adaptor Web Services User Guide | 92DRAFT

CAA-WS sample sites

Asynchronous SOAP Client
The asynchronous SOAP client has the same business logic as the SOAP Client, but functions in asynchronous
mode.

To adapt the mode, asyncRegiClientFile uses newline as the message separator for the inbound files. With
this, you can feed many messages by a file. Route replies to only the original source are turned off in the
process configuration.

To check efficiency difference, use registryQuery.50.xml in the same manner as registryQuery.xml.

The registryQuery.50.xml file contains 50 messages.

Raw
With the Raw feature, a client acts as a basic HTTP client. It sends and receives any type of data, including
multi-part, by constructing the exact message to be sent and specifying any HTTP headers.

Similarly, a Raw server is an HTTP server with few expectations of content. It can receive any type of data,
including multi-part, and send anything back.

Provider (Handler)
In Raw mode, the Provider side is implemented as a Jetty handler object, not a CXF Provider. This affects the
configuration and makes it different from the SOAP/REST configuration entries.

CXF is responsible for starting Jetty port instances. The configuration requires a workaround of creating a
REST endpoint on the same port as the Raw handler. This gets CXF to start that port so the handler can take
effect. The sample configuration files for the Raw server do these tasks and are a place to learn how it works.

RawHandler uses the dumpMsg proc to show what is on the inbound message and what is sent back as a reply.
The bounceRaw proc is used to look at the request URL and create a response. This is the most important part
of the proc:

get the user data
set userData [msgmetaget $mh USERDATA]
get the request info
set requestInfo [keylget userData httpRequestInfo]
#puts "request info: $requestInfo"
get the request path
set requestPath [keylget requestInfo "path"]
#puts "path is: $requestPath"
create reply message
set cont ""
set httpResponseHeaders {}
read the request path and operate accordingly
if {[regexp {customers$} $requestPath]} {
 set cont "<customers><customer id='123'/><customer id='234'/></customers>"
 keylset httpResponseHeaders Content-Type {text/xml;charset=UTF-8}
} elseif {[regexp {customer$} $requestPath]} {
 set cont "<customer id='123'><name>joe blow</name><address>joe's house</address></customer>"

Infor Cloverleaf Application Adaptor Web Services User Guide | 93DRAFT

CAA-WS sample sites

 keylset httpResponseHeaders Content-Type {text/xml;charset=UTF-8}
} else {
 set cont "<html><head><title>hello!</title></head><body>Hello from Cloverleaf!</body></html>"

 # default content type is text/html so no requirement to set it
}

This is similar to the REST provider section. See REST. The Raw handler implements the same functionality as
the REST Provider, but does it in the Raw HTTP manner. For example, it specifically sets the response
Content-Type header to text/XML, whereas in REST this is assumed. Additionally, if it does not find anything
recognizable in the request path, it returns an HTML page instead.

This Raw handler is tested from your browser and from the Raw client. For examples, you can try these URLs:

• http://localhost:9005/raw/customers

• http://localhost:9005/raw/customer?id=123

• http://localhost:9005/raw/somethingelse

These URLs trigger different areas of functionality.

Raw Client
The rawClientFile is a Fileset-local protocol thread which watches the request directory for messages to
send on to the RawClient thread. It then writes replies into the response directory. The updateRawClientMessage
Tcl proc does this:

update the user data to make it a GET instead of the default POST
set userData {{httpRequestInfo {{method GET}}}}

Instead of sending the message using the default POST, the message content is ignored and it sends an HTTP
GET. There is also commented out code that shows how to use USERDATA to override some other items as well.
This type of code is good to review to understand how items can be overridden.

The RawClient dumps the outbound message as it is leaving the system, and the reply message as it returns.
Everything else is already configured in the configuration files. The default HTTP POST is overridden to GET by
the Tcl proc in the rawClientFile thread.

You can change the URL in different ways. One way is to change it from the configuration file to get a different
response from the Raw handler. Another way is to update the updateRawClientMessage Tcl proc to override
the URL to get another response.

Asynchronous RAW Client
The asynchronous RAW Client has the same business logic as the RAW Client, but functions in asynchronous
mode.

Infor Cloverleaf Application Adaptor Web Services User Guide | 94DRAFT

CAA-WS sample sites

To adapt the mode, asyncRawClientFile uses newline as the message separator for the inbound files. With
this,you can feed many messages by a file. Route replies to only the original source are turned off in the
process configuration.

To check the efficiency difference, place test.100.dat (provided) in the request directory. This triggers the
Client 100 times. Then, check the efficiency difference.

ws_more_samples
ws_more_samples demonstrates these real-life configurations and overrides scenarios:

• web_form_* threads show a client connection sending HTML form values including an HL7 message as an
HTTP POST web form. There is an HTML web form included in the BOX's data directory. This can be used
to post the same data to the server thread. This is a real-life example where a healthcare facility is sending
VXU messages to an Immunization system over HTTPS using a web form.

• path_trxid_client_vxu and path_trxid_client_mdm are two clients sending raw HTTP data using URLs
hosted by a server thread. The server thread parses the URL that is used for trxid routing. This is also a
real-life scenario where the user is sending MDM messages to Cloverleaf over web services.

• qosfilter_in_rawhandler is a server with a Jetty built-in QOSfilter and RequestLogHandler enabled. This
sample shows the possibilities of a raw handler to take advantage of Jetty-provided utilities in serving
requests. Because the GUI support is not completed at the moment, users may see only limited information.
Users who have tech backgrounds and are familiar with Spring XML configurations can read application
Context_qosfilter_in_raw_handler.xml to understand how everything works. This is under the site's
javadriver directory . Several things to highlight here are:
• com.infor.cloverleaf.gjdws.servlets.BypassServletHandler and com.infor.cloverleaf.gjd

ws.servlets.BypassServlet are two placeholders inside CAAWS. They ensure the defined filter chain
is called by Jetty. BypassServlet does nothing in its service() function. The the only thing By
passServletHandler does is to ensure requests flow to the raw handler after they have been handled
by Jetty's servletHandler.

• BypassServletHandler extends org.eclipse.jetty.servlet.ServletHandler. Users are still allowed
to configure all bean properties on it including the context path. This decides how many paths the
handler works.

• FilterHolder is a class that Jetty uses to wrap filters inside its servlet context. This is capable of
holding a filter bean directly or holding a filter class name and a map for the class object's initial
parameters.

• Most of Jetty-provided handlers are subclasses of org.eclipse.jetty.server.handler.HandlerWrapper.
These have a property named handler. Users can assign to it a handler bean, and one-by-one these
handlers form a handler stack. In the sample, it can be found that RawHandler inside RequestLogHandler
inside ContextHandler forms a stack of this kind.

ws_adv_samples
This site demonstrates these more advanced complex configuration and override scenarios:

Infor Cloverleaf Application Adaptor Web Services User Guide | 95DRAFT

CAA-WS sample sites

• Various WS-Security items in the SignEnc threads. For example, UsernameToken, signing, and encryption.
• How to handle attachments. PassThrough also does attachments, but the attachment threads only do

attachments without the complexity of an intermediary.

Signing/Encryption
These samples demonstrate how to manually configure WS-Security settings on Client/server sides, using
Username Tokens, signing, and encryption. CXF uses Apache's WSS4J project to handle the WS-Security.
Understanding how WS-Security is configured is a combination of understanding how CXF calls it and what
options WSS4J provides.

A basic way to set up WS-Security is to use the WS-Policy configuration settings.

WS-Security is a complex subject. You are expected to understand the WS-Security concepts underneath this
to a reasonable level. This topic shows the configuration settings used and how those settings were determined.

The system configuration is similar to other samples. The Provider has a Tcl proc to send back a canned
response. Both the Client and Provider have dumpMsg Tcl procs to show the message content during various
points.

CXF has many WS-Security samples illustrating various concepts. This sample takes the sign_enc sample
directory from CXF and includes it in the working directory for the threads.

In the CXF sample, the configuration is in Java code to set up the WSS4J classes into a CXF interceptor. This
sample converts that Java code into a CXF XML configuration. This is completed by reading the CXF
documentation and WSS4J documentation and converting the Java code to Spring XML.

The sample uses a basic “hello” type of WSDL to keep the focus on the WS-Security and not on the web service
being protected.

Provider

In the CXF sample, Server.java has relevant Java code which configures how WSS4J handles the inbound
message.

Basically the idea is to create a WSS4JInInterceptor class and set those properties there. This is accomplished
in a Spring configuration file.

In the applicationContext_SignEncProvider.xml configuration file, this is mirrored with this XML.

This does the same thing as the Java code. It creates a WSS4JInInterceptor class by passing a properties map
that exactly mirrors the map that was created in Java. It then adds that class to the list of inInterceptors.

The same paths and class names that work in Java also work in the Spring configuration file. This is because
the path sign_enc/build/classes is included in the GJD thread's classpath .

The outInterceptors are configured similarly by converting the outInterceptors from the Java code to the
same Spring configuration file.

Infor Cloverleaf Application Adaptor Web Services User Guide | 96DRAFT

CAA-WS sample sites

Client

Client is the same as Provider. It uses a basic WSDL to create a Client configuration and converting the code
from client.java into Spring configuration format. There is a Fileset-Local thread to handle sending the
message content and writing the response. This is similar to the other samples.

Understanding the CXF/WSS4J Options
Using WS-Security is not difficult, but does require study to understand the interplay between CXF and WSS4J.

You can start at CXF's page on WS-Security at http://cxf.apache.org/docs/ws-security.html. This has a useful
overview on encryption and signing followed by information on how WSS4J fits in with Interceptors. It also
includes examples of how to do various things in CXF. Unfortunately, a large amount of it is in Java, not in
configuration file format, but the conversion is not difficult.

All of the keys/values that are in the parameter map to the WSS4JInInterceptor are described in the WSS4J
documentation at http://ws.apache.org/wss4j/config.html.

These two sources, plus the CXF samples on WS-Security, are the most helpful. CAA-WS does no specialization
of WS-Security versus plain CXF. Generating these configuration files is completed by reading these pages
and reading the CXF samples. It is best for users who must do more than this sample shows, to download the
CXF 2.7.8 source code. Review the WS-Security samples for ideas.

Attachment

The attachment sample uses a basic WSDL to demonstrate both sending attachments and sending a one-way
Web Service request. There is no response message other than HTTP 202 Accepted. This is the HTTP protocol
method. No response message comes back to the system thread.

Provider

The Provider implements the basic WSDL.

The GJD thread forwards the untouched message to a file thread to write the attachment to a file. The file
thread calls the handleAttachmentProvider Tcl proc.

The purpose of this code is to get the base64 data for the first attachment and decode that base64. It then
changes the message content to be the content of the attachment. This way the file thread writes out the
attachment contents to a file.

Client

The Client side invokes the WSDL implemented by the Provider. There is a Fileset-Local thread which monitors
the request directory for a message to send. When it finds a message, it calls the Tcl proc addRequestAttachment.
This adds an attachment to the message.

This reads the file attachmentSource in the process directory to determine the contents of the attachment.
You can put the contents of various file types in there. For example, text files, images, and so on. Then, it tells

Infor Cloverleaf Application Adaptor Web Services User Guide | 97DRAFT

CAA-WS sample sites

http://cxf.apache.org/docs/ws-security.html
http://ws.apache.org/wss4j/config.html

CAA-WS to send it by XOP, as MTOM is enabled in the configuration file. After this, it sets the content ID to the
same XOP ID as that specified in the test message file myattachment.

This also tells CAA-WS that this is a one-way message. This cannot be completed in the configuration file
because there could be multiple operations supported by the configuration. Because not all of them might
be request/response or one-way, this flag must be set in USERDATA. In this way, CAA-WS sends the message
properly using the one-way method.

FHIR
Fast Healthcare Interoperability Resources (FHIR) uses JSON/XML RESTful for an integration/query/response
to mobile.

See http://www.hl7.org/implement/standards/fhir/.

The Cloverleaf FHIR BOX contains working examples and documentation for connecting to a FHIR server. It
successfully exchanges patient demographics as defined in the HL7 FHIR Connectathon Track 1. Track 1 is
for those new to FHIR.

See http://wiki.hl7.org/index.php?title=FHIR_Connectathon_7.

Track 1 includes information on:

• Registering a patient
• Updating a patient
• Retrieving patient history
• Searching patients by name

CAAWS sample site: FHIR_example.box

The sample site shows connections to the FHIR server with the XML and JSON format message.

These FHIR formats are supported:

• XML
FHIR XML files are compiled and are included in the site. Any xlate files without JSON in the file name
uses XML as the destination format.
CIS provides pre-compiled FHIR XML files under the root. For any version earlier than CIS 6.2, you can
use the files in the sample site.

• JSON
CIS 6.2 provides JSON DSTU2 schema files. The sample site uses the root-level JSON schema for translation.
Any xlate files with JSON in the file name use JSON as the destination format.
Because JSON is supported from 6.2, the JSON format does not work in versions earlier than 6.2.

Note: The current BOX samples are with version 2. The BOX is as-is. Refer to the FHIR Bridge for more
comprehensive FHIR enablement tools.

Infor Cloverleaf Application Adaptor Web Services User Guide | 98DRAFT

CAA-WS sample sites

http://www.hl7.org/implement/standards/fhir/
http://wiki.hl7.org/index.php?title=FHIR_Connectathon_7

oauth2_sample
This sample BOX demonstrates several configurations that are possible with CAAWS where the adaptors
access resources behind OAuth2 Authorization. This also demonstrates how OAuth2 Authorization is used to
protect resources/providers that are set up by the adaptors.

The CAA-WS GUI has out-of-box OAuth2 support on the client-side. This is similar to Basic HTTP Authentication
support. Some topics are not covered. Other topics are in the experimental stage.

To use this feature, advanced users should be familiar with the OAuth2 framework and what the CXF framework
can do.

For additional information, go to:

• OAuth 2.0 Authorization Framework
https://datatracker.ietf.org/doc/html/rfc6749

• CXF JAXRS OAuth2 overview
https://cwiki.apache.org/confluence/display/CXF20DOC/JAX-RS+OAuth2

• CXF OAuth2 package source repository
https://github.com/apache/cxf/tree/cfe9f430ee617552eb743140cb78cc5df4c4eb83/rt/rs/security/
oauth-parent/oauth2/src/main/java/org/apache/cxf/rs/security/oauth2

oauth2_sample

This process uses a TCL solution for clients that require OAuth2 connections.

Connections to the authorization server and the resource server are configured in the WS client. TCL scripts
generate access token requests based on the resource server response and then requests the authorization
client to send it for the token.

After the token is fetched, it is saved locally for the resource requests.

oauthClient

This process uses the Cloverleaf built-in WS client solution for OAuth2 connections.

In the conduit configuration for the client, the OAuth2 type authorization is chosen. The ensuing grant type
is switched to the client credentials grant type. In this way, only "client ID" and "secret" are required to identify
the client.

An access token service URI is necessary for the client to locate the authorization server. The scope in this
sample is set in the extra parameters. This can also be set in the grant.

With this information, the client, although different from the client in oauth2_sample, has only one defined
consumer. This automatically acquires the access token when constructing the connection and refreshes the
token when it is expired or about to expire.

oauthResource (Experimental)

This WS server is the counterpart of the oauthClient. Because all CAAWS OAuth2 server-side supports are still
in the experimental stage, there is no front-end GUI.

Infor Cloverleaf Application Adaptor Web Services User Guide | 99DRAFT

CAA-WS sample sites

https://datatracker.ietf.org/doc/html/rfc6749
https://cwiki.apache.org/confluence/display/CXF20DOC/JAX-RS+OAuth2
https://github.com/apache/cxf/tree/cfe9f430ee617552eb743140cb78cc5df4c4eb83/rt/rs/security/oauth-parent/oauth2/src/main/java/org/apache/cxf/rs/security/oauth2
https://github.com/apache/cxf/tree/cfe9f430ee617552eb743140cb78cc5df4c4eb83/rt/rs/security/oauth-parent/oauth2/src/main/java/org/apache/cxf/rs/security/oauth2

This sample is for advanced users to read its application context XML. Additional steps can then be taken to
use CXF JAXRS features inside CAAWS, especially for the OAuth2 aspects.

The server uses a OAuthRequestFilter CXF filter to protect its resource.

A CAAWS raw handler can take advantage of CXF JAXRS filters when there is a defined <jaxrs:server/> in the
context. This context must serve the same path and use a ClDefaultRsResource resource bean.

The critical property of OAuthRequestFilter is the tokenValidator. The rest are mostly checkpoints under the
OAuth2 framework.

In this sample, the validator is an AccessTokenIntrospectionClient. This comes with a common web client
to the authorization server. When a client request with an OAuth2 token is sent to the server, the filter passes
the token to the validator. Then, the validator, AccessTokenIntrospectionClient, forwards the token to the
authorization server and makes an introspection invocation for validation. If the validation fails, then the
request is denied.

AccessTokenIntrospectionClient is not the only choice from CXF. Other AccessTokenValidators include Ac
cessTokenValidatorClient, HawkAccessTokenValidator, JwtAccessTokenValidator and others.

To make use of these validators in the configuration, the beans related to AccessTokenIntrospectionClient
in the sample are replaced with other validator beans.

oauthCodeResource (Experimental)

This is another experimental server. The first time this is accessed from a browser, the user is redirected to
Google's OAuth2 service API to get an authorization code.

When the authorization server redirects the user back to oauthCodeResource with a code, the server exchanges
the code for an access token. It then associates it with the original request and sends them together into
Cloverleaf.

The majority of the work is accomplished by CXF ClientCodeRequestFilter. For details, go to:

https://cwiki.apache.org/confluence/display/CXF20DOC/
JAX-RS+OAuth2#JAXRSOAuth2-OAuth2clientapplicationswithcode-grantfilters

For the source code, go to:

https://github.com/apache/cxf/blob/master/rt/rs/security/oauth-parent/oauth2/src/main/java/org/apache/
cxf/rs/security/oauth2/client/ClientCodeRequestFilter.java

In the sample, CAAClientCodeRequestFilter is an extension that can handle any issues found during tests.

To use the filter:

1 Set up <jaxrs:server/> for a raw handler to use filters.
2 Insert the filter into the server together with ClientTokenContextProvider. This ensures the client token

context is available to the Infor code.
3 Ensure the filter has all necessary information during the authorization code and the access code exchange.

For example, authorizationServiceUri, accessTokenServiceClient, and so on.
4 The jetty engine must be session-enabled because the client token requires local session storage. For

example,<httpj:sessionSupport>true</httpj:sessionSupport>.
5 Set up HTTPAuthenticationHandler, as the filter requires user principle.

Infor Cloverleaf Application Adaptor Web Services User Guide | 100DRAFT

CAA-WS sample sites

https://cwiki.apache.org/confluence/display/CXF20DOC/JAX-RS+OAuth2#JAXRSOAuth2-OAuth2clientapplicationswithcode-grantfilters
https://cwiki.apache.org/confluence/display/CXF20DOC/JAX-RS+OAuth2#JAXRSOAuth2-OAuth2clientapplicationswithcode-grantfilters
https://github.com/apache/cxf/blob/master/rt/rs/security/oauth-parent/oauth2/src/main/java/org/apache/cxf/rs/security/oauth2/client/ClientCodeRequestFilter.java
https://github.com/apache/cxf/blob/master/rt/rs/security/oauth-parent/oauth2/src/main/java/org/apache/cxf/rs/security/oauth2/client/ClientCodeRequestFilter.java

samlSSOResource(Experimental)

This is an example in the oauth2_sample site. This is a SAML SSO (Single Sign On) server sample in addition to
the OAuth2 sample. SAML and some OAuth2 types are comparable to some of the SSO parts and can be used
in mixed mode. This site also contains SAML and OAuth2 types.

Key components in this sample are org.apache.cxf.rs.security.saml.sso.SamlPostBindingFilter and
org.apache.cxf.rs.security.saml.sso.RequestAssertionConsumerService. Details about these components
and related concepts are located at https://cwiki.apache.org/confluence/display/CXF20DOC/SAML+Web+SSO.

Similar crypto settings are found between this setting and the one inside ws_adv_samples.

The difference between SAML SSO and OAuth2 is when applying the POST style. SAML SSO relies on
browser-based HTML form forward. This is one reason why OAuth2 is preferred in applications.

In the link above, a JSP file is set up as the view provider of SamlPostBindingFilter.

For CAAWS, in most instances a standard servlet context is not completely constructed. A SAML request form
is built by BoringSAMLRequestBodyWriter.

A similar HTML response is generated in the body with SAML data. This is similar to the example JSP in CXF
documents. This response is suitable in most SAML SSO cases. In special cases, you can develop your own
view provider.

For files under the java_uccs site, you can index the directory as a resource directory on the classpath of the
Java Driver protocol.

Most of these files are referenced in the SAML SSO sample's Spring application context, except for mymeta1.
xml. This file contains the same metadata as that uploaded to samltest.id. In this way, the test authorization
server trusts this sample.

Infor Cloverleaf Application Adaptor Web Services User Guide | 101DRAFT

CAA-WS sample sites

https://cwiki.apache.org/confluence/display/CXF20DOC/SAML+Web+SSO

HL7 FHIR requirements and tools

Most healthcare application vendors support the HL7 2.x standards. With "meaningful use" and other initiatives,
HL7 v3.x is becoming more familiar to IT staff. Both of these standards provide much in the way of functionality
for interoperability and application interfacing, although both have significant limitations.

HL7 FHIR is developed to overcome some of the limitations that are imposed by the previous HL7 standards.
It can employ XML, JSON, and web service architecture.

Cloverleaf can bridge the gap in the healthcare information environment between HL7 v2.x, v3.x and the
emerging HL7 FHIR standard. This helps to create efficient interoperability between the standards and
applications supporting different standards.

This topic describes the methods used to create Cloverleaf interfaces to work with HL7 FHIR in XML format
and JSON format. Starting in CIS 6.2, there is a “Cloverleaf FHIR examples BOX” with translation examples
for HL7 v2.x to HL7 FHIR XML/JSON. This is located in the CAA/ws/samples directory of Cloverleaf Integration
Services.

These interface examples are provided in the BOX:

• An “HTTP ReST Patient Resource Conditional Update/Create (HTTP PUT)” example utilizes a public FHIR
server at UHN. The translation for this interface results in a single Patient Resource being updated or
created on this public test FHIR server.

• An “HTTP ReST FHIR Transaction Bundle” contains a patient resource and an encounter resource. This
can create or update a patient and encounter on a FHIR server, if a match of one or none is obtained. The
translation for this interface uses the Include translation operation in Cloverleaf Integration Services.

Both of these examples read in a sample HL7 V2.3 Admit/Visit Notify (ADT^A01) message and translates this
to HL7 FHIR resources in XML. These sample translations are developed primarily for the purpose of
demonstrating functionality and are not for production use.

Requirements

• Cloverleaf 6.2 or later
• CAA-WS 2.0.1 or later
• Outbound HTTP access to the internet
• Knowledge of HL7 v2.x, XML, and web services

Open source tools

• soapUI: http://www.soapui.org/
• Oxygen XML: http://www.oxygenxml.com/
• XML Spy: Not open source

Infor Cloverleaf Application Adaptor Web Services User Guide | 102DRAFT

HL7 FHIR requirements and tools

http://www.soapui.org/
http://www.oxygenxml.com/

• FHIR standard: http://www.hl7.org/fhir

Notes

• Regarding the FHIR patient conditional create/update and the conditional create/update for patient and
encounter in the FHIR bundle. These require a match of one or none on the FHIR server. These are based
on identifiers in the sample data. A match of more than one results in an error reported by the FHIR server.

• The FHIR server used in the FHIR sample BOX is a public test server. Therefore, patient identifiers and
encounter identifiers can exist in duplicate due to others testing against the same server. This could lead
to errors being reported on more than one match.

• Similarly, on the public servers, data previously posted can be wiped from the server without notice or
warning. Additional data can also be bulk-loaded overwriting previous tests.

• A solution to an identifier that return a multiple match error is to change the identifiers in the sample
data file and try again.

• The FHIR BOX does not contain any updates for FHIR STU-3 examples. The current BOX examples are
with version 2. This remains as-is. You should use the FHIR Bridge for more comprehensive FHIR
enablement tools.

Deploying Cloverleaf FHIR examples BOX
This procedure describes how to deploy the FHIR examples BOX, including post-deployment manual steps.

1 Deploy the FHIR examples BOX.
a Verify that the FHIR_example.box file exists in the Cloverleaf root directory at $HCIROOT/CAA/ws/samples

.
b To deploy the BOX, open the Cloverleaf client GUI and select the site where you deploy the BOX.
c Open the BOX Manager from the Tools menu and select BOX > Import.
d On the Import BOX dialog box, click Browse and double-click the box directory.
e Select FHIR_example.box.
f In the BOX Manager, right-click FHIR_example and select Deploy.
g In the BOX Summary & Resources dialog box, click Next.
h Click Next.
i On the Confirm Environment Configurations dialog box, click Finish.

If an information dialog box opens, then it is a reminder to compile the FHIR XML schema. Click OK.

2 Compile the FHIR XML format. This is fhir-single.xsd. Included in the BOX is the FHIR schema for DSTU2
(Draft Standard for Trial Use v2).
The FHIR standard is still under development, so stable releases are called “Standard for Trial Use”
followed by a version number. The Draft designation has been dropped for future releases starting with
STU3.
Note: The included translations might not work without modification under the new release. CIS 6.2 and
later versions provide FHIR XML and JSON format for DSTU2.
• When you deploy the BOX in CIS 6.2 and later versions, then the root-level format can be directly

used.

Infor Cloverleaf Application Adaptor Web Services User Guide | 103DRAFT

HL7 FHIR requirements and tools

http://www.hl7.org/fhir

• When you deploy the BOX in earlier versions, then you should compile the XML format. The JSON
format cannot be used.

There are many FHIR XML xsd schema files when you unzip the file http://www.hl7.org/fhir/
fhir-codegen-xsd.zip. In this guide, only FHIR-single.xsd is compiled. This contains all schema code
necessary for all defined FHIR Resources. You can select which FHIR resource to use in translation
configuration.
To compile the FHIR XML Schema xsd file:
a Open the XML Package Manager from the Tools menu and expand xml and then expand

FHIR_DSTU2_201510.
b Highlight and right-click fhir-single.xsd and select Compile. This is the only schema that must be

compiled.
c Click OK, and close XML Package Manager.

3 Run mktclindex:
a In the Script Editor, open the XltStrFhirFormatDateTime.tcl file.
b Save the file to recreate the tclindex.

Cloverleaf BOX contents
Threads in the NetConfig:

• XML
• ADT_Bundle_filein

• ADT_Patient_filein

• fhir_patient_fileout

• fhir_bundle_fileout

• FHIR_Server_response

• FHIR_Server_out

• JSON
• ADT_filein_a_JSON

• ADT_filein_b_JSON

• UHN_HAPI_JSON

• file_out_post_JSON

• fhir_bundle_fileout_JSON

Tcl procs

• XltStrFhirFormatDateTime.tcl

• XltStrFhirFormatDate

• XltStrFhirFormatDateTime

• TpsFhirSetServerUrl.tcl

• XltStrFhirGenerateUuid.tcl

Translations

Infor Cloverleaf Application Adaptor Web Services User Guide | 104DRAFT

HL7 FHIR requirements and tools

http://www.hl7.org/fhir/fhir-codegen-xsd.zip
http://www.hl7.org/fhir/fhir-codegen-xsd.zip

• FHIR_DSTU2_Patient(_JSON).xlt

• FHIR_DSTU2_Encounter(_JSON).xlt

• FHIR_DSTU2_Message_Bundle_JSON_Include.xlt

• FHIR_DSTU2_Transaction_Bundle_Include.xlt

Tables

• V2-FHIR-Encounter-SystemValues.tbl

• V2-FHIR-IdentifierTypes.tbl

• V2-FHIR-Patient-AddressUse.tbl

• V2-FHIR-Patient-Gender.tbl

• V2-FHIR-Patient-Language.tbl

• V2-FHIR-Patient-MaritalStatus.tbl

• V2-FHIR-Patient-SystemValues.tbl

• V2-FHIR-ServerURL.tbl

Test data file: Test_HL7_Message.dat

Formats:

• json/fhir_1.0.2

• xml/FHIR_DSTU2_201510

Running examples
These examples use a sample HL7 v2.3 ADT^A01 message, located in testdata/Test_HL7_Message.dat.

There are two sample interfaces provided in the BOX:

• A file protocol that reads in the HL7 v2.3 message. Then, it translates it to an XML FHIR Patient Resource.
This Patient Resource is sent to the public FHIR server at UHN through a Cloverleaf web services client.

• A file protocol that reads in the HL7 v2.3 Admin/Visit Notification. Then, it translates it into an XML FHIR
Transaction Bundle containing a Patient and an Encounter Resource. This FHIR Bundle is sent to the
public FHIR server at UHN through a Cloverleaf web services client.

There are also three “file out” protocol threads for writing out the XML that is being created, sent, and received.

JSON threads do the same work as XML threads. Compared with XML threads, they use JSON FHIR format,
and the translation files that are based on JSON format.

Sample HL7 message

An example ADT ADT^A01 is included in the box.

Example inbound data file. This is read from testdata/Test_HL7_Message.dat, before translation:

MSH|^~\&|SCM|SCM|HL7REVISION||20100205101158||ADT^A01|18003310|D|2.3^MEVN|A01|20100128154025|||
registrar2test^Test^Registrar2|20100128154025^MPID||40000051^^^XA System ID|40000051^^^MRN||
walker^george^barry^^Mr||19531120|Male||White|1000 sandtown circle^^captial^NT^98211^^Home||
(521)7835632^^^^^521^7835632^^Home|(218)3219611^^^^^218^3219611^^Business|English|Married|Baptist|
70000209^^^Account|332214321|||Not Hispanic/Latino|atlanta^MPD1|||||||N^MPV1||Inpa

Infor Cloverleaf Application Adaptor Web Services User Guide | 105DRAFT

HL7 FHIR requirements and tools

tient|INC^^^DMC|Routine|||
027979^Ho^Eleanor^M|||||||Trans-Foster Home|||059964^Xerogeanes^John|Private|70000209^^^
Account|||||||||||||||||||||||||20100128153600^MPV2||^N|leg pain|||||||||||||||||||||||||||||||||||
Ambulance^MGT1|1|40000057^^^XA System ID|walker^george^barry^^Mr||
1000 sandtown circle^^cap
tial^NT^98211|(521)7835632^^^^^521^7835632|(218)3219611^^^^^218^3219611|19531120|Male|I|Self|332214321^M

Running the FHIR patient create/update interface
1 Open the Network Monitor, and start the ADT_Patient_filein protocol thread.
2 Start the fhir_patient_fileout, FHIR_Server_out, and FHIR_Server_response protocol threads.

At this point, a Patient FHIR resource goes out to UHN and create or update the patient resource, resulting
in:

<Patient xmlns="http://hl7.org/fhir">
 <identifier>
 <use value="usual" />
 <type>
 <coding>
 <system value="http://hl7.org/fhir/v2/0203" />
 <code value="MR" />
 </coding>
 </type>
 <system value="urn:oid:1.2.26.146.555.217.0.1" />
 <value value="40000059" />
 <assigner>
 <reference value="http://somefhirserver.com/DSTU2/Organization/23"
/>
 <display value="SCM" />
 </assigner>
 </identifier>
 <identifier>
 <use value="usual" />
 <type>
 <coding>
 <system value="http://hl7.org/fhir/identifier-type" />
 <code value="SB" />
 </coding>
 </type>
 <system value="urn:oid:2.16.840.1.113883.4.1" />
 <value value="332214321" />
 <assigner>
 <display value="U. S. Social Security Administration" />
 </assigner>
 </identifier>
 <name>
 <use value="usual" />
 <text value="Mr george barry walker " />
 <family value="walker" />
 <given value="george" />
 <given value="barry" />
 </name>
 <telecom>
 <system value="phone" />
 <value value="(218)3219611" />
 <use value="work" />
 </telecom>
 <gender value="male" />
 <birthDate value="1953-11-20" />
 <address>
 <use value="home" />
 <line value="1000 sandtown circle" />
 <city value="captial" />
 <state value="NT" />
 <postalCode value="98211" />
 </address>

Infor Cloverleaf Application Adaptor Web Services User Guide | 106DRAFT

HL7 FHIR requirements and tools

 <maritalStatus>
 <coding>
 <system value="http://hl7.org/fhir/v3/MaritalStatus" />
 <code value="M" />
 </coding>
 <text value="Married" />
 </maritalStatus>
 <contact>
 <relationship>
 <coding>
 <system value="http://hl7.org/fhir/patient-contact-relation
ship" />
 <code value="guarantor" />
 <display value="Guarantor" />
 </coding>
 <text value="Guarantor" />
 </relationship>
 <name>
 <use value="usual" />
 <family value="walker" />
 <given value="george" />
 <given value="barry" />
 <prefix value="Mr" />
 </name>
 <telecom>
 <system value="phone" />
 <value value="(521)7835632" />
 <use value="home" />
 </telecom>
 <telecom>
 <system value="phone" />
 <value value="(218)3219611" />
 <use value="work" />
 </telecom>
 <address>
 <line value="1000 sandtown circle" />
 <city value="captial" />
 <state value="NT" />
 <postalCode value="98211" />
 </address>
 <gender value="male" />
 </contact>
 <communication>
 <language>
 <coding>
 <system value="urn:ietf:bcp:47" />
 <code value="en" />
 </coding>
 <text value="English" />
 </language>
 </communication>
</Patient>

The response from the FHIR server is viewable in the fhirwsclient engine log.
This is an example response:

Response-Code: 200
Encoding: UTF-8
Content-Type: application/xml+fhir;charset=UTF-8
Headers: {connection=[close], Content-Location=[http://fhirtest.uhn.ca/baseDstu2/Pa
tient/122411/_history/2], content-type=[application/xml+fhir;charset=UTF-8], Date=[Tue, 18
Oct 2016 23:27:11 GMT], ETag=[W/"2"], Last-Modified=[Tue, 18 Oct 2016 23:27:11 GMT], Loca
tion=[http://fhirtest.uhn.ca/baseDstu2/Patient/122411/_history/2], Server=[Apache-Coyote/1.1],
 transfer-encoding=[chunked], X-Powered-By=[HAPI FHIR 2.1-SNAPSHOT REST Server (FHIR Server;
 FHIR 1.0.2/DSTU2)]}
Payload: <OperationOutcome xmlns="http://hl7.org/fhir">
 <text>
 <status value="generated"/>
 <div xmlns="http://www.w3.org/1999/xhtml">
 <h1>Operation Outcome</h1>
 <table border="0">

Infor Cloverleaf Application Adaptor Web Services User Guide | 107DRAFT

HL7 FHIR requirements and tools

 <tr>
 <td style="font-weight: bold;">information</td>
 <td>[]</td>
 <td>
 <pre>Successfully created resource "Patient/122411/_history/2"
in 33ms</pre>
 </td>
 </tr>
 </table>
 </div>
 </text>
 <issue>
 <severity value="information"/>
 <code value="informational"/>
 <diagnostics value="Successfully created resource "Patient/122411/_history/2"
 in 33ms"/>
 </issue>
</OperationOutcome>

Running the FHIR transaction bundle interface
1 Open the Network Monitor and start the ADT_Bundle_filein protocol thread.
2 Start the fhir_bundle_fileout, FHIR_Server_out, and FHIR_Server_response protocol threads.

The fhir_bundle_fileout protocol thread writes the resulting FHIR Transaction Bundle to tmp/fhir_
bundle_out.xml in the site directory, after translation:

<Bundle xmlns="http://hl7.org/fhir">
 <id value="e023021b-4e18-4d59-59c5-74e24fd823d9" />
 <type value="transaction" />
 <entry>
 <fullUrl value="urn:uuid:322b9283-ab9e-4c51-4a7b-6060513ffc3c" />
 <resource>
 <Patient>
 <identifier>
 <use value="usual" />
 <type>
 <coding>
 <system value="http://hl7.org/fhir/v2/0203" />
 <code value="MR" />
 </coding>
 </type>
 <system value="urn:oid:1.2.26.146.555.217.0.1" />
 <value value="40000051" />
 <assigner>
 <reference value="http://somefhirserver.com/DSTU2/Organization/23"
/>
 <display value="SCM" />
 </assigner>
 </identifier>
 <identifier>
 <use value="usual" />
 <type>
 <coding>
 <system value="http://hl7.org/fhir/identifier-type" />
 <code value="SB" />
 </coding>
 </type>
 <system value="urn:oid:2.16.840.1.113883.4.1" />
 <value value="332214321" />
 <assigner>
 <display value="U. S. Social Security Administration" />
 </assigner>
 </identifier>
 <name>

Infor Cloverleaf Application Adaptor Web Services User Guide | 108DRAFT

HL7 FHIR requirements and tools

 <use value="usual" />
 <text value="Mr george barry walker " />
 <family value="walker" />
 <given value="george" />
 <given value="barry" />
 </name>
 <telecom>
 <system value="phone" />
 <value value="(218)3219611" />
 <use value="work" />
 </telecom>
 <gender value="male" />
 <birthDate value="1953-11-20" />
 <address>
 <use value="home" />
 <line value="1000 sandtown circle" />
 <city value="captial" />
 <state value="NT" />
 <postalCode value="98211" />
 </address>
 <maritalStatus>
 <coding>
 <system value="http://hl7.org/fhir/v3/MaritalStatus" />
 <code value="M" />
 </coding>
 <text value="Married" />
 </maritalStatus>
 <contact>
 <relationship>
 <coding>
 <system value="http://hl7.org/fhir/patient-contact-relationship"
 />
 <code value="guarantor" />
 <display value="Guarantor" />
 </coding>
 <text value="Guarantor" />
 </relationship>
 <name>
 <use value="usual" />
 <family value="walker" />
 <given value="george" />
 <given value="barry" />
 <prefix value="Mr" />
 </name>
 <telecom>
 <system value="phone" />
 <value value="(521)7835632" />
 <use value="home" />
 </telecom>
 <telecom>
 <system value="phone" />
 <value value="(218)3219611" />
 <use value="work" />
 </telecom>
 <address>
 <line value="1000 sandtown circle" />
 <city value="captial" />
 <state value="NT" />
 <postalCode value="98211" />
 </address>
 <gender value="male" />
 </contact>
 <communication>
 <language>
 <coding>
 <system value="urn:ietf:bcp:47" />
 <code value="en" />
 </coding>
 <text value="English" />
 </language>
 </communication>
 </Patient>
 </resource>
 <request>

Infor Cloverleaf Application Adaptor Web Services User Guide | 109DRAFT

HL7 FHIR requirements and tools

 <method value="PUT" />
 <url value="Patient?identifier=40000051" />
 </request>
 </entry>
 <entry>
 <fullUrl value="urn:uuid:ec4b0444-99f3-4ac0-5d99-d4eecf27d641" />
 <resource>
 <Encounter>
 <identifier>
 <use value="usual" />
 <system value="urn:oid:1.2.26.146.555.217.0.2" />
 <value value="70000209" />
 <assigner>
 <reference value="http://somefhirserver.com/DSTU2/Organization/23"
/>
 </assigner>
 </identifier>
 <status value="arrived" />
 <class value="inpatient" />
 <type>
 <text value="Routine-Inpatient" />
 </type>
 <patient>
 <reference value="Patient?identifier=40000051" />
 <display value="Patient MRN=40000051" />
 </patient>
 <period>
 <start value="2010-01-28T15:36:00-05:00" />
 </period>
 <reason>
 <text value="leg pain" />
 </reason>
 <hospitalization>
 <admitSource>
 <text value="Trans-Foster Home" />
 </admitSource>
 </hospitalization>
 <location>
 <location>
 <display value="INC" />
 </location>
 </location>
 </Encounter>
 </resource>
 <request>
 <method value="PUT" />
 <url value="Encounter?identifier=70000209" />
 </request>
 </entry>
</Bundle>

Additionally, if the Cloverleaf server can access the internet, the FHIR Transaction Bundle should have
updated the public FHIR server at UHN.
This should be observable in the fhirwsclient process log, or similar:

Response-Code: 200
Encoding: UTF-8
Content-Type: application/xml+fhir;charset=UTF-8
Headers: {connection=[close], Content-Location=[http://fhirtest.uhn.ca/baseDstu2
/Bundle/6ac30661-930b-4ada-a7f8-9930aee9b116], content-type=[application/xml+fhi
r;charset=UTF-8], Date=[Tue, 18 Oct 2016 23:48:00 GMT], Location=[http://fhirtes
t.uhn.ca/baseDstu2/Bundle/6ac30661-930b-4ada-a7f8-9930aee9b116], Server=[Apache-
Coyote/1.1], transfer-encoding=[chunked], X-Powered-By=[HAPI FHIR 2.1-SNAPSHOT
REST Server (FHIR Server; FHIR 1.0.2/DSTU2)]}
Payload: <Bundle xmlns="http://hl7.org/fhir">
 <id value="6ac30661-930b-4ada-a7f8-9930aee9b116"/>
 <type value="transaction-response"/>
 <link>
 <relation value="self"/>
 <url value="http://fhirtest.uhn.ca/baseDstu2"/>

Infor Cloverleaf Application Adaptor Web Services User Guide | 110DRAFT

HL7 FHIR requirements and tools

 </link>
 <entry>
 <response>
 <status value="200 OK"/>
 <location value="Patient/122414/_history/2"/>
 <etag value="2"/>
 <lastModified value="2016-10-18T19:47:59.894-04:00"/>
 </response>
 </entry>
 <entry>
 <response>
 <status value="200 OK"/>
 <location value="Encounter/122403/_history/2"/>
 <etag value="2"/>
 <lastModified value="2016-10-18T19:47:59.913-04:00"/>
 </response>
 </entry>
</Bundle>

This log file sample shows that the Patient and Encounter already existed and were updated to “history/
2”.

Public FHIR test servers and this BOX
The public FHIR server used with this BOX is the one provided by UHN. Because this is a public reference
server provided at the discretion on UHN, it could go down, break, or be enhanced at any time. A FHIR Resource
created or otherwise present today could be deleted without notice.

For additional public servers, see:

http://wiki.hl7.org/index.php?title=Publicly_Available_FHIR_Servers_for_testing

The URL for the server used by this BOX is read from Tables/V2-FHIR-ServerURL.tbl. This allows for changes
to test with a different end-point. Values that are used from this table are Bundle, Patient and Patient_Action.
The Patient and Bundle values are for the URL end-point (FHIR server URL). The Patient_Action specifies the
ReST method to use. For this sample, PUT and POST are supported for Patient.

For the Bundle, the action is coded in the translation and is not overridden by this table. The Transaction
Bundle is a ReST PUT for Patient and Encounter. The value for the match to determine update or create for
patient is the first identifier from the translation (XML result). The Encounter match value is the Encounter ID
from PV1-19.

Note: The Bundle succeeds only if there is a single match, or no match. Multiple matches cause the action to
be unsuccessful on the FHIR server and an HTTP error (404) is returned. The response from the server in the
error condition should state the reason for the rejection.

Updating FHIR schemas
When the FHIR examples BOX was created, the newest version of FHIR had not been balloted. You can obtain
and use the interim standard known as STU3.

Infor Cloverleaf Application Adaptor Web Services User Guide | 111DRAFT

HL7 FHIR requirements and tools

http://wiki.hl7.org/index.php?title=Publicly_Available_FHIR_Servers_for_testing

Use these steps to perform an update to the FHIR Schemas:

1 Download the FHIR schema zip file from http://hl7.org/fhir/2016May/fhir-codegen-xsd.zip.
2 Create a directory under formats/xml for the new xsd files. For example, Stu3_may2016.

When you unzip the file, it contains many xsd files. There is a separate xsd file for each defined resource.
For example:
• account.xsd

• allergyintolerance.xsd

• appointmentresponse.xsd

• appointment.xsd

• auditevent.xsd

There are also specialty xsd files, such as:
• fhir-all.xsd

• fhir-base.xsd

• fhir-single.xsd

• fhir-xhtml.xsd

3 The primary file is fhir-single.xsd.
In the xsd compile section of the BOX deployment, this xsd file contains almost everything that is required
in one file. In this case xml.xsd and fhir-xhtml.xsd are also required. The rest can be deleted.

4 Use the same steps in compiling the FHIR XML format (fhir-single.xsd) to compile.
Optionally, you can run this command from the directory that contains fhir-single.xsd:

hcixmlcompile -f fhir-single.xsd -p stu3_May2016 -F pretty

Note: If you are using the new standard in an existing translation configuration, then the translation
must be reconfigured to use the new XML package. The paths to some elements have changed. There is
also the addition or removal of some elements and even whole resources. It is important to thoroughly
and carefully review the translation to account for required adjustments.

Cloverleaf 6.2 translation Include operation
One of the features in Cloverleaf Integration Services is the Translation Configurator’s Include operation. This
is helpful with HL7 FHIR.

In the BOX that is described in the examples, one of the translations creates a FHIR Transaction Bundle. This
contains a Patient Resource and an Encounter Resource. See Running examples. The translation for the
individual resources, Patient, and Encounter can be completed first and tested separately. Then, they can be
included to build a FHIR Bundle. This is how this BOX was created.

Before this feature was added, Transaction Bundle mapping had to be recreated starting from scratch,
remapping each element for Patient and Encounter. With the Include operation, the stand-alone Patient and
Encounter translations can be “included” into the translation for the FHIR Bundle.

To use the Include operation in the context of an FHIR Transaction Bundle:

Infor Cloverleaf Application Adaptor Web Services User Guide | 112DRAFT

HL7 FHIR requirements and tools

http://hl7.org/fhir/2016May/fhir-codegen-xsd.zip

• A FHIR Transaction Bundle includes a few additional elements.
• We recommend that a few elements of the FHIR Patient Resource also be performed. This establishes

the differences in the paths to the elements in a Bundle versus stand-alone.
• The path difference information is used in the Include operation.

Using the Include operation
1 In the Translation Configurator, select File > Reconfigure and for Root select nm1:Bundle.

These are sample mappings from a Bundle:
• Source: transaction

Action: COPY
Destination: nm1:Bundle.0.nm1:type.&value

• Source: 0(0).PID(0).#3(0).[0]
Action: COPY
Destination: nm1:Bundle.0.nm1:entry(0).1.nm1:resource. nm1:Patient.1.nm1:identifi
er(0).0.nm1:value.&value

• Source: =usual
Action: COPY
Destination: nm1:Bundle.0.nm1:entry(0).1.nm1:resource.nm1:Patient.1.nm1:identifi
er(0).0.nm1:use.&value

These are the sample mappings, similar to above, from a Patient Resource only:
• Source: 0(0).PID(0).#3(0).[0]

Action: COPY
Destination: nm1:Patient.1.nm1:identifier(0).0.nm1:value.&value

• Source: =usual
Action: COPY
Destination: nm1:resource.nm1:Patient.1.nm1:identifier(0).0.nm1:use.&value

Note: The element path differences are used in the next step.

2 Select New Append, and for Action select INCLUDE.
3 In the XLT File list, select FHIR_DSTU2_Patient.xlt.
4 In this example, after FHIR_DSTU2_Patient.xlt is selected for the Source, the same inbound message

structure is used for the host translation as the included translation. The host translation is the Xlate.
The included translation is the sub-Xlate. The path for the whole message is 0(0). This is the value for
both Group Prefix in Host Xlate and Group Prefix in Sub-Xlate on the Source side.

5 For the Destination, the information from the previous sample Copy operations, step 1, provides the
necessary information. The path to the destination element needs to be modified. Taking the Patient ID
value element from above, notice the difference in paths:

nm1:Bundle.0.nm1:entry(0).1.nm1:resource.nm1:Patient.1.nm1:identifier(0).0.nm1:value.&
 value

Infor Cloverleaf Application Adaptor Web Services User Guide | 113DRAFT

HL7 FHIR requirements and tools

nm1:Patient.1.nm1:identifier(0).0.nm1:value.&value

With this information:
• The Destination column “Group Prefix in Host Xlate” should be:

nm1:Bundle.0.nm1:entry(0).1.nm1:resource.nm1:Patient

• The “Group Prefix in Sub-Xlate” column should be:

nm1:Patient

Note the value in the entry(0) path element. The FHIR Resources contained within an FHIR Bundle are a
repetition of the Entity XML element. The next FHIR Resource in the Bundle has paths containing entry(1),
and so on. In the example provided, the Encounter Resource is added after Patient and has an entry value
of 1.
This completes the necessary steps to include a sub-Xlate within a host-Xlate.
Note: You cannot change the included Xlate code in the host translation. Changes to the included
translation must take place in the included translation file. For example, FHIR_DSTU2_Patient.xlt. Changes
can also be as additional code within the host translation after the Include operation. In this case, the
full path to the elements is required.

Creating an HTTP outbound web service client thread
Web service client protocol threads and web service server protocol threads should always be in their own
process. One process cannot have more than one web service protocol thread.

1 Create a new Cloverleaf thread using the java/ws-rawclient protocol.
2 Click Properties to start the web services wizard.
3 For debugging, select Message Logging Enabled.

Note: This should not be selected for production interfaces due to log file performance, size, and data
security.

4 Click New and on the Type Selection wizard page select Create Raw Consumer.
5 Click Next.

• For Address, specify, for example, http://fhirtest.uhn.ca/baseDstu2/Patient.
• For Default Method, select POST from the menu.
Note: The URL that is used here is overwritten in the provided Box through the Tcl UPoC: TpsFhirSet
ServerUrl, which is in place as a translation post-proc.

6 Click Next. Because this example is not using TLS, a conduit is not required. Select Do Not Create New
Conduit and click Finish.

7 On the WS Raw Client dialog box, specify a Name for the web service. In this example, specify UHN_HAPI.

Infor Cloverleaf Application Adaptor Web Services User Guide | 114DRAFT

HL7 FHIR requirements and tools

8 Because this web service Client is FHIR XML, click Add to create two Request Header Overrides:

Header Name: Content-type Header Value: application/xml+fhir
Header Name: Accept Header Value: application/xml+fhir

9 Click OK, and then save the changes in Network Configurator.

Infor Cloverleaf Application Adaptor Web Services User Guide | 115DRAFT

HL7 FHIR requirements and tools

CAA-WS Swagger

With CAA WS swagger support, you can get the target service API definition in real-time to assist in the Consumer
configuration.

Raw Consumer configuration
On the CAA WS-RawClient Creating Wizard dialog box, there is a Configure Raw Consumer From Swagger
File page after the Conduit Configuration page. The Finish button is always enabled on this page. To skip
this step, click Finish.

On this page, you can load the swagger JSON file from any location. This can be a local file, external URL, or
ION API gateway URL. The swagger file is only supported in JSON format.

The loaded API paths and corresponding request method (HTTP verb) are presented as a tree structure on
the left side of the page. You can select the request method node to switch to the corresponding Parameter
List on the right side.

The Parameter List panel lists the Name, Value, Type, Required, and Location for each parameter. These
fields are defined from the swagger file parameters node. Only the Value column is editable.

For the HTTPS URL, you must ensure the conduit configuration has already been prepared before configuring
the Swagger Raw Consumer. Otherwise, the loading process opens a warning message and the process stops.

The loading process downloads the swagger file through the conduit.

When Finish is clicked, the wizard generates an individual Raw Consumer for each selected HTTP verb node.

The selected request method and all parameters are displayed on the General tab.

The selected request method name is displayed in Default Method.

For a regular HTTP request, the parameter can appear in the path, header, query, FormData, cookie, and body.
The parameter values are stored at the corresponding places on RawConsumer General panel according to
the location type.

The path and query parameters are displayed in Address.

The header, cookie, formData, and body parameters are displayed in the corresponding sub-tabs.

The Headers, Cookies, and Form Data sub-tabs have Name, Value columns and Add/Remove buttons. The
Body sub-tab is a text area.

Infor Cloverleaf Application Adaptor Web Services User Guide | 116DRAFT

CAA-WS Swagger

Parameter locations

Stored locationUI component of General
panel

Parameter location

This value is stored in the address attribute
of the bean tag.

Address fieldpath

This value is stored in the address attribute
of the bean tag.

Address fieldquery

This value is stored in the headers property
of the bean tag.

Headers sub-tabheader

This value is stored in the cookies property
of the bean tag.
Note: This location is only supported on
OpenAPI 3.0.

Cookies sub-tabcookie

This is stored in the formData property of the
bean tag.
This is used to construct an HTTP message
payload when working with the POST action.
This conflicts with the Cloverleaf outbound
messages role.
To provide better flexibility, the =CLMsgPaylo
ad keyword is reserved for a form-data value.
In the server, when the keyword is found the
related form key is assigned with the engine
message payload.
Form data value is taken as URL encoded.
If you requires a value that is the same as =C
LMsgPayload, then enter %3DCLMsgPayload.
By doing this, you can take advantage of the
form data and the message payload.
Note: This location is only supported on
Swagger 2.0.

Form Data sub-tabFormData

This is stored in the body property of the bean
tag.
Note: This location is only supported on
Swagger 2.0.

Body sub-tabbody

OAuth2 client on the Conduit panel
To access the published web service, the WS client supports OAuth2 authentication.

Infor Cloverleaf Application Adaptor Web Services User Guide | 117DRAFT

CAA-WS Swagger

With OAuth 2.0 (Open Authorization), a website or application can access resources that are hosted by other
web apps on behalf of a user.

The CAA thread functions as a server service and a OAuth2 client.

The Conduit panel contains an Authentication tab. This is for defining all authentication-related contents.

The Authentication Type contains an OAuth2 options.

The OAuth 2.0 Authentication panel includes these configuration fields:

• Grant Type
• OAuth2 Token URL
• Scope
• Client ID
• Client Secret
• Service Account Name
• Service Account Password

Notes:

• Grant Type supports “Resource Owner” and “Client Credential”.

• Resource Owner supports OAuth2 Token URL, Scope, Client ID, Client Secret, Service Account Name,
and Service Account Password.

• The Client Secret and Service Account Password values are encrypted.

• Client Credential supports OAuth2 Token URL, Scope, Client ID, and Client Secret.

• OAuth2 Token URL cannot match with the current Conduit Name. Otherwise, the current conduit is
unable to obtain the access token.

Infor Cloverleaf Application Adaptor Web Services User Guide | 118DRAFT

CAA-WS Swagger

XSD WSDL tool: Client

This topic describes how and when to use the XSD WSDL tool client version to access a web service from the
system.

When accessing a web service from the system, use the WSDL that describes the web service that the system
accesses to create an XSD. This XSD describes the messages you can send back and forth.

You can then compile the XSD in a system XML package. This is used in creating transformations between the
SOAP messages. These messages are sent between the web service and the message format you use internally
to process the request.

This tool reads the WSDL and generates XSD files for input and output messages to the service. Then, the
generated XSD files can be copied to the server using the XML Package Manager to compile for the service.

Before running the tool, prerequisites for all runs are:

• Both the system and CAA-WS must be installed properly.
• Create a site and have an XML package directory in it.

To run the tool from the command prompt:

• Have a command window open to the CAA\ws\tool\xsdWsdlToolClient directory.
• Run setroot in the command window.
• In the command window, run setsite MySite, replacing MySite with the name of your site.

To run the tool from the GUI, start the Cloverleaf GUI and switch to the desired site.

After running the tool, complete step 3 of Usage scenario: Accessing a web service in the system.

Usage scenario: Accessing a web service in the system
You can use these steps to access a web service in the system using the XSD WSDL tool.

1 Create a site and make a CAA-WS SOAP client thread for each web service operation you must support.
Alternatively, one client thread can be used to invoke multiple operations within the same or even multiple
WSDLs. In this case, specify a dispatch name to distinguish the SOAP clients belonging to a single thread.

2 Create a system XML package to hold your files. This is accomplished from the GUI or a command prompt.
Run the XSD WSDL tool client. This creates XSD files for the input and output messages from the web
service. The files are copied to the xml package that was created in XML Package Manager or the command

Infor Cloverleaf Application Adaptor Web Services User Guide | 119DRAFT

XSD WSDL tool: Client

line. It then compiles them using hcixmlcompile from the GUI or command prompt. For example, xyz_
input.xsd and xyz_output.xsd.

3 Create a translation from the client thread using xyz_input.xsd.
When creating the translation, the Choose File Formats dialog box opens.
• For Format, select XML. Then select your Package.
• For Xml, select xyz_input.
• For Root, only SOAP-ENV:Envelope is listed.
The result of the translation can be sent to invoke the service.

4 The response can be translated back as a reply if the service sends a reply. To do this, use xyz_output
when selecting the translation format to read the XML output of the web service.

Client: Setting up single runs
You can do subsequent runs of the tool on the same source XSD to overwrite the files that were made in a
previous run. You can repeat these steps with different XSD source files for different web services.

After completing the prerequisites, you can set up single runs.

See XSD WSDL tool: Client.

Determine the URI to the WSDL to use:

• If it is on a website, then the URI would be similar to http://example.com/some/directory/path/xyz.wsdl
.

• If it is on your local computer, then the URI is similar to file:///c:/temp/xyz.wsdl.
• If you have the WSDL in the same directory in which you launched the tool, then use a relative path URI,

for example, xyz.wsdl.

Running XSD WSDL tool: Client version by command line
1 From the command prompt, run setroot and setsite in a command window.
2 Run the xsdWsdlToolClientGUI.bat batch file to start the tool. In Linux, use ./xsdWsdlToolClientGUI.sh.

Running the XSD WSDL tool: Client by GUI
From the GUI, the tool can be launched from Launch Bar > Configuration > WSDL2XSD or you could get a
prompt when creating a WS client thread.

Infor Cloverleaf Application Adaptor Web Services User Guide | 120DRAFT

XSD WSDL tool: Client

1 When the GUI is first opened, all entries are blank and WSDL URI is selected. Specify the URI to the WSDL
to use.

2 Before clicking Load WSDL, select a check box.
Show fully qualified names: Select to have the names from the WSDL that have a namespace associated
with them printed with the namespace prefixed before the name.
Print WSDL contents after loading: Select to have to have the WSDL text contents printed after loading.

3 Click Load WSDL. The program attempts to read the WSDL from the location specified.
If it cannot be found, then an error prints in Results.
If it finds the WSDL and can parse it, then the Servicemenu populates with the list of services in the WSDL.
If there is only one choice in a menu or list, then it is automatically selected.

4 After selecting the service, the Port list populates. After selecting the port, the Binding and PortType
fields show the name of the Binding and PortType. These are associated with the chosen port from the
WSDL.

5 Select the Operation to invoke. This populates the Input Message and Output Message with the names
of the messages for this operation.

6 Select the Target Folder where the target xsd files are generated.
This could be the XML package in your site in which to generate and compile the XSDs if you are at the
server side.

7 Specify the Target XSD Filename. When this is finished, Full Input Filename and Full Output Filename
show the full path names of the resulting XSD files that are generated.

8 Click Generate Target XSDs. This takes the selected settings, pulls the relevant information from the
WSDL, and creates two XSD files: input and output versions.
These files have SOAP envelopes around the content chosen. System transformations can generate the
entire SOAP envelope to send to a web service and parse the response SOAP envelope.
If the generation fails, then an exception message is shown giving a description of the problem. Otherwise,
the result shows that the XSD generation was successful.

9 This step is optional. If you did the previous steps at the client side, then upload the generated xsd files
to the server side’s xml package. You can use any tool or copy local folders to the package in the Cloverleaf
XML Package Manager GUI.
These XSDs can then be compiled in the XML Package Manager or directly by running the hcixmlcompile
command at the server side into OCM files. These are used by the system to permit translations in the
given XML structure.

Infor Cloverleaf Application Adaptor Web Services User Guide | 121DRAFT

XSD WSDL tool: Client

XSD WSDL tool: Server

This topic describes how and when to use the XSD WSDL tool when creating a web service in the system.

When creating a web service in the system, it is useful to compile an XSD in a system XML package. This is
used to create transformations between the SOAP messages sent over the web service and the message
format that processes the request.

It is also useful to provide clients with a WSDL that describe your web service. This tool assists with the creation
of these files.

Before running the XSD WSDL tool:

• Both the system and CAA-WS must be installed properly.
• Create a site and have an XML package directory in it.
• Have a command window open to the CAA\ws\tool\xsdWsdlTool directory.
• Run setroot in the command window.

After running the tool, go to steps 3 and 4 in the Usage scenario: Creating a web service with the XSD WSDL
tool.

Multiple web services

A separate WSDL is created for each service. To have one WSDL describe all services, you must manually
merge them.

The XSD WSDL server tool does not support adding more than one operation to a WSDL.

Multiple XSDs

If you have an XSD with your intended input element and another XSD with the output element, you must
merge them.

The XSD WSDL server tool does not support using multiple XSDs or reading included XSDs inside of the first
one.

Infor Cloverleaf Application Adaptor Web Services User Guide | 122DRAFT

XSD WSDL tool: Server

Usage scenario: Creating a web service with the XSD WSDL
tool
These are the typical steps to create a web service in the system using this tool:

1 Create a site and make a CAA-WS server thread in the site for each web service operation to support.
2 Create a system XML package to hold your files, from the system GUI or from a command prompt.

a Copy an XSD file which describes the input and output elements for the operation into the package
folder. The XSD must have both input and output elements in one file. XSD includes are not supported.

b Run the XSD WSDL tool to create and compile *_soap.xsd and generate a WSDL.
For example, if your source XSD is named xyz.xsd, then the tool creates xyz_soap.xsd and xyz.wsdl. The
xyz_soap.xsd is then compiled with the system’s hcixmlcompile program.
Note: It is only necessary to create and compile a *_soap.xsd file if you are using MESSAGE mode and doing
translations with the whole SOAP Envelope. If you are using PAYLOAD mode, then this step can be skipped.
You must do translations only using your original XSD that describes the payload structure.

3 Create a translation from the server thread using xyz_soap.xsd when you are using MESSAGE mode in these
steps. If you are using PAYLOAD mode, then you create a translation using only your original XSD.
When creating the translation, the Choose File Formats dialog box opens.
• For Format, select XML. Then select your Package.
• For Xml, select xyz_soap.
• For Root, only SOAP-ENV:Envelope is listed.
The result of the translation can be used to implement the service. The response can be translated back
as a reply if the service requires it.

4 Now that the service is ready to use, the WSDL, if you created one, can be provided to users of the service.
Because the WSDL references the source XSD you provide, you must copy the XSD to the same directory
as the WSDL. You can also have it sent along with it.
Distribute the WSDL by configuring the server thread to serve that WSDL. When this is finished, you can
get the WSDL by appending ?wsdl to the service address that is specified in the server thread configuration.
For example, if you specified a service URL https://my.greatsite.com/uploadHL7, the WSDL is available
at https://my.greatsite.com/uploadHL7?wsdl.
Alternatively, WSDLs can be sent out-of-band. For example, emailed.

Server: Setting up single runs
You can do subsequent runs of the tool on the same source XSD to overwrite the files that were made in a
previous run. You can also repeat these steps with different XSD source files for different web services.

After completing the prerequisites, you can set up single runs.

See The XSD WSDL tool: Server.

Infor Cloverleaf Application Adaptor Web Services User Guide | 123DRAFT

XSD WSDL tool: Server

1 Obtain or create an XSD file which has the input and output elements for your web service. Copy this file
to your site’s XML package directory. For example, %HCISITEDIR%\formats\xml\MyPackage. In UNIX, this is
$HCISITEDIR/formats/xml/MyPackage.

2 In the command window, run setsite MySite , replacing MySite with the name of your site.

Running the XSD WSDL tool: Server from command line
Ensure that you have already run setroot and setsite and copied the source XSD into your XML package.

1 Run setroot and setsite in a command window.
2 Run the xsdWsdlToolGUI.bat batch file to start the tool. In UNIX, this is ./xsdWsdlToolGUI.sh.

Running the XSD WSDL tool: Server from GUI
Ensure you have already run setroot and setsite and copied the source XSD into your XML package. The GUI
tool uses a basic Java Swing.

1 When you first open the GUI, all entries are blank. From the XML Package list, select the XML package
directories in your site.
The XSD File list is populated with the list of XSD files in your selected package. Selecting the XSD file
populates the list boxes for Input Element and Output Element. It also populates some of the WSDL
generation input boxes with defaults based on the XSD file name.

2 Select the input and output elements from their menus. This populates the WSDL Generation’s Input
Message and Output Message input boxes with defaults. These defaults are from the selected input and
output element names.

3 Select the SOAP version to use. SOAP 1.1 is the most widely supported. SOAP 1.2 is now supported by
most web service stacks. This selection is used to generate the correct SOAP Envelope namespace. If you
generate a WSDL, then it is set as the WSDL Binding type, so clients know to send SOAP messages of the
correct version.

4 Click Generate and Compile to generate the new XSD and compile it. The output prints in Results.
The results show that the XSD was successfully written. If there are lines showing XML compiler’s stdout:
or XML compiler’s stderr:, then that indicates there was a problem compiling the new XSD. If it is not
necessary to generate a WSDL, then close the dialog box.

5 To generate a WSDL, continue by doing this:
• If you alter the Service Name field, then the other fields whose defaults are based on it are

automatically repopulated.
• Update Service URL to the correct host:port/path for your service.
• Click Generate to write the WSDL.

The results are written to Results, indicating that it successfully wrote the WSDL.

Infor Cloverleaf Application Adaptor Web Services User Guide | 124DRAFT

XSD WSDL tool: Server

Portecle keystore management tool (third-party)

CAA-WS takes advantage of multiple CXF features which depend extensively on the usage of the Public Key
Infrastructure (PKI) technologies. For example, HTTPS and WS-Security.

Therefore, the management of X.509 digital certificates and private keys are an essential part of the operation
of these features.

Java
CAA-WS is written in Java, so the management of PKI and certificates is heavily influenced by the mechanism
that Java uses to manage them. This is centered around the concept of keystore and truststore.

These types of stores are of the same internal structure, the JKS format or Java KeyStore. The distinction
between them is primarily a logical one.

This specifies that the keystore contains public keys, and their associated private keys. These keys are used
to authenticate self to remote partners. The truststore contains only the public keys of remote partners that
are to be trusted.

Java run time, on which the system and CAA-WS run, provides a command line tool keytool that is capable
of managing the keystore. Management of the keystore is in a variety of ways. These include generating a PKI
key pair and its CSR, or certificate signing request, importing/exporting certificates, and so on.

Portecle open source GUI
One of the features in Portecle that is absent from keytool is the ability to import key pairs from another
keystore. This is especially true for one in a different format from JKS. Sometimes it is convenient to import
key pairs in the pkcs12 format, which is used in Microsoft’s and other popular security frameworks.

Portecle has a user-friendly GUI and is simpler to use than the command-line based keytool. You should use
Portecle to manage the keystores required for the CAA-WS HTTPS and other PKI functionalities.

Because the Portecle site http://portecle.sourceforge.net/ has extensive information on how to use this tool,
this topic focuses more on installation.

Infor Cloverleaf Application Adaptor Web Services User Guide | 125DRAFT

Portecle keystore management tool (third-party)

http://portecle.sourceforge.net/

Portecle installation
Download Portecle from http://sourceforge.net/projects/portecle. Click the Download link to get the latest
version. Then, unzip it to a directory, for example, portecle-1.7.

Alternatively, some operating systems such as Linux may already have an RPM package built for your system.

Read the readme file in the unzipped directory about prerequisites to complete before launching the tool and
other installation information.

• If the machine that runs this tool already has JDK/JRE 1.6 installed, then the installation is already finished.
• You should update the JCE unlimited strength jurisdiction policy files in the JRE so that Portecle can

handle more key sizes or algorithms as necessary.
These policy files are downloaded from Java’s website and overwrite the same named files under lib/
security of the JRE installation. The overwritten files include local_policy.jar and US_export_policy.
jar

Launching Portecle
The readme file that comes with Portecle has detailed instructions on launching.

After the correct JCE provider jar and unlimited strength policy files have been properly installed, the tool is
launched using the java -jar command.

If .jar files are associated with Java on your operating system, then double-click portecle.jar to launch it.

Infor Cloverleaf Application Adaptor Web Services User Guide | 126DRAFT

Portecle keystore management tool (third-party)

http://sourceforge.net/projects/portecle

WS-Policy

This enhancement relies on the WS-Policy framework already available within CXF. See http://www.w3.org/
TR/ws-policy/.This framework permits relatively convenient engagement of these technologies:

• WS-SecurityPolicy 1.2 specifies security policy assertions for WS-Security, WS-Trust, and
WS-SecureConversation.

• WS-Security 1.0 and 1.1 includes UserNameToken 1.0 and 1.1, X509 Certificate Token 1.0 and 1.1, and
SAML Token 1.0, 1.1, and 2.0 support.

• WS-SecureConversation 1.3 builds on WS-Trust and WS-Security to establish a faster channel for multiple
secure messages between two systems, the conversation. This is in comparison with using asymmetric
X509 encryption on every message.

• WS-ReliableMessaging, 2005 version, a protocol that permits messages to be delivered reliably between
distributed applications in the presence of software component, system, or network failures.

• WS-Addressing 1.0 conveys end-to-end message characteristics including references for source and
destination endpoints and message identity.

• WS-Trust 1.3 WS-Security defines the basic mechanisms for providing secure messaging. WS-Trust uses
these base mechanisms and defines additional primitives and extensions for security token exchange.
These enable the issuance and dissemination of credentials within different trust domains.

• WS-Trust, SAML, and other technologies can be engaged by WS-Policy documents but are not supported
in this release due to time constraints for dependency configurations. An advanced user can manually
create the required policy document and create the necessary Java classes to support these technologies.

This topic gives a short introduction of how to setup a WS-Policy based WS-Security setup. It may be all that
is required for those users with an understanding of WS-Security and related configuration technologies such
as Java keystores/truststores. These topics explain more of the configuration details.

There are four major components involved with configuring WS-Policy in CXF:

• Policy files
• jaxws:client and jaxws:server configuration properties
• Encryption/signature property classes
• Callback classes

The steps are illustrated by adding UsernameToken processing to the ws_samples site’s registry and
registryClient example. Message body encryption is not used to keep the messages as basic as possible for
analysis and explanation.

Overview of steps

1 Modify the WSDL to include the WS-Policy documents necessary. A copy of the WSDL is created for this.
2 Set the involved client and server threads to use that WSDL copy.

Infor Cloverleaf Application Adaptor Web Services User Guide | 127DRAFT

WS-Policy

http://www.w3.org/TR/ws-policy/
http://www.w3.org/TR/ws-policy/

3 Provide a list of valid user names/passwords for the server, and provide one of those user names/passwords
to the client.

4 Start the threads and test.
5 Change to an unknown user name and verify failure.

Modifying the WSDL
1 Open the Properties dialog box for the SOAPProvider_Registry thread and switch to the Policy Generator

tab.
2 Select the Use Username Token check box. This is all that is required to keep the messages as basic as

possible to demonstrate how it works.
3 Scroll to the bottom of this dialog box and click Generate WSDL with Policy Save As. This opens a dialog

box to save the modified WSDL document. This is the same WSDL, but has WS-Policy docs included. Save
it with a new name, so as not to overwrite the original.

Using the new WSDL
1 Select the General tab.
2 For WSDL Location, change the WSDL file name to match the one created.
3 Go to the RegistryClient thread and change the WSDL Location. This sets both the client and server

threads to use the same WSDL and WS-Policy documents.

Providing valid usernames for server and select username
for client
1 On the server thread, SOAPProvider_Registry, go to the Policy Properties tab.
2 In the General Properties section, select Use Default Handler and specify a Name and Password. The

callback handler is used to look up passwords for a variety of WS-Security features. You can supply your
own class if necessary. For now, the default works to demonstrate username token validation.

3 Save the changes.
4 On the Client thread, RegistryClient, go to the Policy Properties tab.
5 Specify this same user in the UsernameToken Properties username field. Leave the password field blank.
6 Do the same for the callback handler that was completed on the server. Select Use Default Handler and

put in the same username/password pair. Then add another invalid user.
7 When the client sends its message, it uses the username specified under UsernameToken Properties and

uses this list to look up the password. When an invalid test to verify functionality is made, change the
username to “bob."

Infor Cloverleaf Application Adaptor Web Services User Guide | 128DRAFT

WS-Policy

8 Save the changes.

Java driver bug
There is a Java Driver bug in Cloverleaf 6.0.1 on Windows which causes the Java temp directory to be incorrect.
This causes the server threads to fail when receiving a message. This happens because CXF attempts to use
the temp directory to store information to help prevent replay attacks. With an unusable temp directory, this
fails.

To work around this issue, in the Network Configurator’s Process Configuration dialog box, on the Java
Driver tab, User Defined Options sub-tab, set:

• Name: java.io.tmpdir
• Value: C:\Users\hciuser\AppData\Local\Temp

This sets java.io.tmpdir to the hciuser temp directory. Ensure not to put a “\” on the end of the directory
name. This is only necessary on Windows and only causes issues on server threads, preventing replay attacks.

Starting and testing threads
1 Start the registry and registryClient threads and send the sample message request. See CAA-WS sample

sites.
2 View the log file for the registry process.

On the inbound message is this header in the SOAP Header section of the message log:

<wsse:UsernameToken xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-
wssecurity-secext-1.0.xsd"
xmlns:wsse11="http://docs.oasis-open.org/wss/oasis-wss-wssecurity-secext-1.1.xsd"
xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd"

wsu:Id="UsernameToken-937A5BD494264E539813838651676032"><wsse:Username>jesse</
wsse:Username><wsse11:Salt>AvHvscM5boqmq+YCCd7FaQ==</wsse11:Salt><wsse11:Itera
tion>1000</wsse11:Iteration></wsse:UsernameToken>

In this, there is a request username. Note that the password is not visible on the network. This header
goes in the message to Cloverleaf if the server is set in MESSAGE mode. This is so Tcl or other code can
access the Username value for the request. Then the code can ascertain that it has already been validated
by the server. Otherwise, the message would not have made it to Cloverleaf.

Infor Cloverleaf Application Adaptor Web Services User Guide | 129DRAFT

WS-Policy

Policy files
Policy files are XML descriptions of the policies that a service is using. These can range from basic assertions
such as “use WS-Addressing,” to complex WS-SecureConversation security settings. CXF supports many ways
to attach these policy files to a service.

They can be attached in the jaxws:server and jaxws:client configuration settings. This has a potentially
severe drawback because only one policy can be specified and encryption/signing parts cannot vary between
request and response messages. This could cause trouble with customers whose consultants have advised
variation between request/response signing/encrypting.

Due to this essentially cosmetic issue, CAA-WS attaches policy files directly into the WSDL files that describe
a service. This has these advantages:

• If the WSDL is supplied with WS-Policy already in place, then do not be concerned about policy file settings.
Nevertheless, there could be non-standard policy assertions in place that are not supported by CXF. An
example of CXF is Microsoft specific policy settings that are created by .NET services. There could also be
assertions that require the user to write unimplemented class files. For example, various validators.

• Flexibility is increased by specifying different signing/encryption and other rules on the input/output
messages of individual operations within a given binding.

• Service consumers can use the policy described in the WSDL to automatically configure their own client
systems.

The CAA-WS GUI only supports configuring the WSDL files to contain policy elements and not attached by
jaxws:client andjaxws:server configuration elements. A user that knows CXF can manually write the
configuration files as desired.

Running fail test
To verify that messages that do not pass the security check do not make it to Cloverleaf, send another request
with an invalid username. Use one that the server does not recognize.

1 Return to the Properties for the registry client and change the username to "bob." This should match
the username that was previously added in anticipation of this test to the default callback handler
configuration. This makes it a valid user from the client perspective so it can send the request, but the
server should reject it.

2 Save the changes.
3 Restart the client process, resend the request message, and review the server log again.

If you have left the default logging configuration for the registry process in place, then the inbound
message and this log entry are:

Nov 7, 2013 3:10:22 PM
 com.infor.cloverleaf.gjdws.utils.DefaultCallback handle FINER: password lookup
 for 'bob' found no password

This is the server checking the username "bob" and not finding a password. Next in the log is the exception
produced when the user fails to be authorized:

Infor Cloverleaf Application Adaptor Web Services User Guide | 130DRAFT

WS-Policy

Nov 7, 2013 3:10:22 PM
 org.apache.cxf.ws.security.wss4j.WSS4JInInterceptor handleMessage WARNING:
 org.apache.ws.security.WSSecurityException: The security token could not be
 authenticated or authorized

At this point, the exception is sent back as a response to the query and no message is sent to Cloverleaf.
This is the expected behavior. Unauthenticated messages do not go to Cloverleaf. Code is not required
there to check whether a request was authorized against the policy.

jaxws:client and jaxws:server configuration properties
The jaxws:client and jaxws:server configuration elements can be used to configure these properties. These
are configured automatically by the GUI tool.

The column on the right side is used to indicate if the given property is available in the release for configuration
by the GUI. These properties are displayed by exact matching name, case included, in the Policy Properties
tab. The names have the ws-security prefix stripped off for readability. All properties can be manually
configured by editing the relevant application context XML file.

User properties
See http://cxf.apache.org/javadoc/latest/org/apache/cxf/ws/security/SecurityConstants.html.

SupportedDescriptionProperty name

XThis is the user's name. It is used
differently by each of the WS-Se-
curity functions.

ws-security.username

XThis is the user's password when
ws-security.callback-handler is
not defined. This is only used
when adding a password to a
UsernameToken.

ws-security.password

XThis is the user's name for signa-
ture. This is used as the alias
name in the keystore to get the
user's cert and private key for sig-
nature.

ws-security.signature.username

XThis is the user's name for encryp-
tion. This is used as the alias name
in the keystore to get the user's
public key for encryption.

ws-security.encryption.usernam
e

Infor Cloverleaf Application Adaptor Web Services User Guide | 131DRAFT

WS-Policy

http://cxf.apache.org/javadoc/latest/org/apache/cxf/ws/security/SecurityConstants.html

Callback class and crypto properties
See http://cxf.apache.org/javadoc/latest/org/apache/cxf/ws/security/SecurityConstants.html.

SupportedDescriptionClass

XCallbackHandlerclass used to
obtain passwords.

ws-security.callback-handler

SAML CallbackHandler class used
to construct SAML Assertions.

ws-security.saml-callback-hand
ler

Crypto property to use for signa-
ture, if ws-security.signature.cr
ypto is not set instead.

ws-security.signature.properti
es

Crypto property to use for encryp-
tion, if ws-security.encryption.c
rypto is not set instead.

ws-security.encryption.propert
ies

XCrypto object to be used for signa-
ture. If this is not defined, then ws
-security.signature.properties
is used instead.

ws-security.signature.crypto

XCrypto object to be used for en-
cryption. If this is not defined then
ws-security.encryption.propert
ies is used instead.

ws-security.encryption.crypto

Note: For symmetric bindings that specify a protection token, the ws-security-encryption properties are
used.

Boolean WS-Security configuration tags
For example, the value should be "true" or "false."

SupportedDefinitionDefaultConstant

XWhether to validate the
password of a received U
sernameToken or not.

truews-security.validate.t
oken

XWhether to enable Certifi-
cate Revocation List
(CRL) checking or not
when verifying trust in a
certificate.

falsews-security.enableRevo
cation

Infor Cloverleaf Application Adaptor Web Services User Guide | 132DRAFT

WS-Policy

http://cxf.apache.org/javadoc/latest/org/apache/cxf/ws/security/SecurityConstants.html

SupportedDefinitionDefaultConstant

XWhether to always en-
crypt UsernameTokens
that are defined as a Sup
portingToken. This
should not be set to false
in a production environ-
ment, as it exposes the
password, or the digest
of the password, on the
wire.

truews-security.username-t
oken.always.encrypted

XWhether to ensure com-
pliance with the Basic
Security Profile (BSP)
1.1.

truews-security.is-bsp-com
pliant

Whether to self-sign a
SAML Assertion. If this is
set to true, then an en-
veloped signature is
generated when the
SAML Assertion is con-
structed.

falsews-security.self-sign-
saml-assertion

XWhether to cache Usern
ameToken nonces.

variesws-security.enable.non
ce.cache

XWhether to cache
Timestamp Created
Strings.

variesws-security.enable.tim
estamp.cache

Non-boolean WS-Security configuration parameters
SupportedDefinitionConstant

XTime in seconds to append to the
Creation value of an incoming
Timestamp to determine whether
to accept the Timestamp as valid.
The default value is 300 seconds
(5 minutes).

ws-security.timestamp.timeToLi
ve

XTime in seconds in the future
within which the Created time of
an incoming Timestamp is valid.
The default value is 60.

ws-security.timestamp.futureTi
meToLive

Infor Cloverleaf Application Adaptor Web Services User Guide | 133DRAFT

WS-Policy

SupportedDefinitionConstant

Attribute URI of the SAML Attribu
teStatement where the role infor-
mation is stored. The default is
http://schemas.xmlsoap.org/ws/
2005/05/identity/claims/role.

ws-security.saml-role-attribut
ename

Reference to the KerberosClient
class used to obtain a service
ticket.

ws-security.kerberos.client

SpnegoClientAction implementa-
tion to use for SPNEGO. Permits the
user to plug in a different imple-
mentation to obtain a service
ticket.

ws-security.spnego.client.acti
on

JAAS Context name to use for Ker
beros. Currently only supported
for SPNEGO.

ws-security.kerberos.jaas.cont
ext

Kerberos Service Provider Name
(spn) to use. Currently only sup-
ported for SPNEGO.

ws-security.kerberos.spn

Holds a reference to a ReplayCach
e instance that a is used to cache
UsernameToken nonces. Default in-
stance that is used is the EHCache
ReplayCache.

ws-security.nonce.cache.instan
ce

Holds a reference to a ReplayCach
e instance that is used to cache
Timestamp Created Strings. De-
fault instance that is used is the E
HCacheReplayCache .

ws-security.timestamp.cache.in
stance

Set this property to point to a
configuration file for the underly-
ing caching implementation. The
default configuration file that is
used is cxf-ehcache.xml in the cxf-
rt-ws-security module.

ws-security.cache.config.file

TokenStore instance to use to
cache security tokens. By default,
this uses the EHCacheTokenStore if
EhCache is available. Otherwise it
uses the MemoryTokenStore .

org.apache.cxf.ws.security.tok
enstore.TokenStore

Infor Cloverleaf Application Adaptor Web Services User Guide | 134DRAFT

WS-Policy

SupportedDefinitionConstant

Comma separated string of regu-
lar expressions that are applied
to the subject DN of the certifi-
cate. This is used for signature
validation, after trust verification
of the certificate chain that is as-
sociated with the certificate.
These constraints are not used
when the certificate is contained
in the keystore (direct trust).

ws-security.subject.cert.const
raints

If one of the WSS4J Validators re-
turns a JAAS Subject from Valida-
tion, then the WSS4JInIntercepto
r attempts to create a SecurityCo
ntext based on this Subject. If this
value is not specified, then it tries
to get roles using the DefaultSec
urityContext in cxf-rt-core. Other-
wise, it uses this value in combina-
tion with the SUBJECT_ROLE_CLASS
IFIER_TYPE to get the roles from
the Subject.

ws-security.role.classifier

If one of the WSS4J Validators re-
turns a JAAS Subject from Valida-
tion, then the WSS4JInIntercepto
r attempts to create a SecurityCo
ntext based on this Subject. Cur-
rently accepted values are prefix
or classname. Must be used in
conjunction with the SUBJECT_ROL
E_CLASSIFIER. The default value is
prefix.

ws-security.role.classifier.ty
pe

Unsupported entries are links to a java object classname which requires significant developer knowledge, or
highly specialized configuration options. In both instances, in-depth knowledge is required. This level of user
must determine the correct value to specify in the application context XML. These entries might be added in
future revisions as more requirements are made.

Encryption/signature class files
A class MerlinWrapper is provided that permits the encryption/signature properties to be set into a Spring
Bean in the configuration file. The GUI creates instances of this class and sets the parameters as specified by
the user for keystore/truststore/and so on. Then, it sets the crypto properties to point at these class instances.

Infor Cloverleaf Application Adaptor Web Services User Guide | 135DRAFT

WS-Policy

This removes the typical necessity for separate crypto property files. It also permits the entire WS-Policy set
of properties to reside in the one XML configuration file generated by the GUI.

Callback classes
These are essentially classes that CXF calls when it requires more information. The value this field requires
is the fully qualified classname that implements the callback interface.

The ws-security.callback-handler is used when CXF has a username or a certificate alias in hand and must
know the password for it. This is the user's password in the case of username, or the key password in the case
of certificate alias.

A sample class is supplied whose key/value pairs are supplied in the config file from the GUI, called the default
callback handler. The source code is also supplied. Advanced users can follow the same interface and
implement a database, or LDAP or XYZ, driven callback class.

This is the source code for the default callback class:

import java.io.IOException;
import java.util.HashMap;
import java.util.Map;

import javax.security.auth.callback.Callback;
import javax.security.auth.callback.CallbackHandler;
import javax.security.auth.callback.UnsupportedCallbackException;

import org.apache.ws.security.WSPasswordCallback;

public class DefaultCallback implements CallbackHandler {

 // hold the username to password data in this map
 private Map<String, String> passwords =
 new HashMap<String, String>();

 @Override
 public void handle(Callback[] callbacks) throws IOException,
 UnsupportedCallbackException {
 for (int i = 0; i < callbacks.length; i++) {
 WSPasswordCallback pc = (WSPasswordCallback)callbacks[i];

 String pass = passwords.get(pc.getIdentifier());
 if (pass != null) {
 pc.setPassword(pass);
 return;
 }
 }
 }

 public Map<String, String> getPasswords() {
 return passwords;
 }

 public void setPasswords(Map<String, String> passwords) {
 this.passwords = passwords;
 }

}

Infor Cloverleaf Application Adaptor Web Services User Guide | 136DRAFT

WS-Policy

When the handle method runs, it does a lookup in the hashmap and stores the password in the Callback
object. CXF then uses this password in different ways, depending on the context.

• If it is doing a UsernameToken operation, then it passes in a username to determine the password that
goes along with it.

• If it is doing an X509 signing operation, then it looks for the password for the key alias.

User interface for configuration and policy generation
Policies are XML snippets to be embedded in the WSDL. A special tool within the Policy Generation tab on
SOAP Clients and Servers is provided to generate these policy files. Because the WSDL can be at a remote
location that is accessed by HTTP, there is no guarantee that the IDE can edit the WSDL.

For these reasons, the tool generates a copy of the WSDL document with the selected policy options. It is up
to users to edit the original WSDL. Or, users can store this copy and point to that instead, so that the service
uses these policy settings:

• Reliable Message Delivery
• User Username Token
• Use X509 certificates for signing/encryption
• Establish WS-SecureConversation
• All Input Operations, all options
• All Output Operations, all options

These options represent a relatively confined subset of possible WS-Policy configuration options. As the array
of options is complex, this list provides the most commonly used configuration options. This tool is only a
generator. It is not an editor because of the limitless configuration options that users could manually edit a
WSDL to contain.

Options in the generator become disabled when incompatible options are selected. For example, when X509
signing/encryption is enabled, Use Transport Security is disabled. This is not to say that you cannot run
X509 signing/encryption over HTTPS. Technically, you can run X509 if you manually configure WS-Security.
It is only that WS-Policy deems it pointless. If they both were to be enabled simultaneously, then each can
be used without the other by the policy compliance engine. This is because WS-Policy compliance permits
automatic choosing between equivalent alternatives available in a policy.

Other options are child options, and so are disabled if their parent option is not selected. There are many
options under X509 signing/encryption. If X509 signing/encryption is not selected, then those options are
disabled.

WS-Addressing is automatically checked when another option is selected that requires WS-Addressing to be
enabled. It is also disabled so it cannot be unchecked. If WS-Addressing is enabled on a policy, then it does
not matter whether it is checked or not in the SOAP client or server options.

• If the policy requires it, then it is enabled.
• If the policy does not require it, then the SOAP Client/Server options take effect.

Infor Cloverleaf Application Adaptor Web Services User Guide | 137DRAFT

WS-Policy

You can use the two buttons to generate the modified WSDL and display it in the box to be copied. You can
also generate the modified WSDL and display it in the box. This opens a Save As dialog box for you to save
the file to the file system.

Policy properties
The other configuration settings are jaxws:server and jaxws:client. These are separate from the WS-Policy
snippets that are embedded in the WSDL. They are used by CXF to configure certificates, usernames, passwords,
and so on, that are necessary for it to comply with those WS-Policies. They are all written to the same
application context file to which the properties on the General tab are written.

All lowercase names that are shown in the UI match the tables in the User properties section. These are all
prefixed by ws-security. For example, the username property that is shown is the ws-security.username
property. You can refer to CXF documentation for more details if necessary. See jaxws:client and jaxws:server
configuration properties.

The uppercase names that are shown in the UI are for the crypto properties that are not ws-security.* type
properties. Instead, they are configuration elements for the CAA-WS provided cryptographic configuration
class. For example, the keystore path and password are stored in the crypto class linked under the ws-secu
rity.signature.crypto property. Keystore and Truststore are the only ones currently similar to that.

There is no design time linkage to the policy files. This is impossible, as there could be multiple policies within
a WSDL and the one to be enabled depends on the message being sent/received. The UI does not know which
fields the user requires to fill out. You must know if your policy uses UsernameTokens and if so, fill out that
section. The same applies for X509 certificates.

The General Properties section has items applicable to one or more of the previous sections. For example,
the callback handler applies to UsernameToken and X509. It also has that are global to the policy. For example,
the timestamp information.

The Callback classes section has more details on the callback handler in general and some specifics about
the default callback handler. See Callback classes.

USERDATA overrides
Overrides are a necessary part of WS-Security. For example, in the case of UsernameToken, it would be
advantageous to send a variety of usernames. The mechanism is not difficult to use. It is the same as all the
other CAA-WS overrides, and uses the USERDATA field. To override any of the listed fields pass a key with that
name into the nested keyed list under the new wss key. This includes those not supported by the GUI.

For example, to override the UsernameToken's username, a specific alias to sign with, and a specific alias to
encrypt to:

{{wss {{ws-security.username james}
{ws-security.signature.username charles}
{ws-security.encryption.username rob}}}}

Infor Cloverleaf Application Adaptor Web Services User Guide | 138DRAFT

WS-Policy

Different from other aspects of CAA-WS, inbound messages do not have a corresponding wss key with
WS-Security related information. The issue is that the information is not readily available in CXF. Most
applications, though, only require the security verified. This happens automatically when the WSDL contains
WS-Policy statements. Applications requiring more than that can use MESSAGE mode to receive the entire SOAP
message. Then, they can view the WS-Security SOAP headers to read information such as the UsernameToken's
username, X509 certificate's CN, and so on.

Subsequent versions could change this and provide parsed information in a wss key. You can submit requests
for this to Support.

Infor Cloverleaf Application Adaptor Web Services User Guide | 139DRAFT

WS-Policy

CAA-WS logging

Logging is a developer’s main method of fixing bugs. The key to good logging is to log only what you think
you require, instead of an overwhelming flood of unnecessary information to sift through. This could lose the
import logs within.

CAA-WS has these logging options:

• Inbound/outbound message logging
• Cloverleaf message dump
• CAA-WS internal logging

Inbound/Outbound message logging
With SOAP/REST clients and servers, and the Raw Client, CXF-based message logging can be enabled. The
Raw Handler (server) does not have this feature. It runs at the Jetty level, and does not pass through CXF
code. This type of logging shows inbound and outbound messages as the client sees them when it is sending.

SOAP/REST clients/servers have their own individual Message Logging Enabled check boxes on their
configuration screens.

For everything except Raw Handler (server), you can turn all on/off on the Bus.

The tooltip reminds you about which type of configuration items the message logging affects.

Cloverleaf message dump
By calling Tcl to dump a message you can see exactly what Cloverleaf is getting from and sending to a CAA-WS
thread.

All the sample threads use this. For outbound threads (clients), the Outbound tab has the TPS Outbound
Data UPoC and TPS Inbound Reply UPoC options.

Both of these have the dumpMsg Tcl proc which dumps the message for the outbound message and its reply,
respectively. For inbound threads (servers), the Inbound tab has the TPS Inbound Data and TPS Outbound
Reply UPoCs.

Infor Cloverleaf Application Adaptor Web Services User Guide | 140DRAFT

CAA-WS logging

CAA-WS internal logging
For troubleshooting, CAA-WS logs information as it processes messages. For most users, this is unnecessary.
If you suspect a bug or some fault lies with CAA-WS or the underlying CXF or Jetty, then enable the Java-based
logging for these software packages. This might give you hints about what is going on.

How to configure

This sort of logging falls under the Java Util Logging domain. You can search the internet for more information
about what sort of logging configurations are possible under Java Util Logging. This includes specific examples
of turning on logging to a separate file, learning about log levels, and so on.

For an example, the registry process in the ws_samples sample site has it enabled. This is configured in the
Process Configuration dialog box.

For the process, you create a new User Defined Option with the name java.util.logging.config.file and
set the value to the location of your logging.properties file. The Java Driver $SITEPATH variable points to the
site directory. Under that, in the WS directory, is the sample logging.properties file.

By default at the bottom of this file are two relevant lines:

org.apache.cxf.level = INFO
com.infor.cloverleaf.gjdws.level = FINEST

These set CXF logging to a high level and GJDWS to the lowest level possible. Generic Java Driver web services
(GJDWS) is the internal name for CAA-WS. By doing this, CXF logs major events and CAA-WS logs everything
it can.

Output example
This is an example in the process log from CAA-WS:

Nov 7, 2013 2:58:50 PM com.infor.cloverleaf.gjdws.WSServer doStart
INFO: CAA-WS license verified

If the level was turned up higher, for example, WARNING, then this would not show in the log. An example from
a library not specifically listed in logging.properties is:

Nov 7, 2013 2:58:50 PM org.springframework.beans.factory.xml.XmlBeanDefinitionReader loadBeanDef
initions
INFO: Loading XML bean definitions from URL [file:/C:/cloverleaf/cis6.0/integrator/ws_samples/
javadriver/registry/../applicationContext_SOAPProvider_Registry.xml]

This log is from the Spring Framework when the XML context file is loaded. INFO level logs from libraries are
printed by default. This is also adjustable in the logging.properties file as the ROOT logger. To turn this off,
set org.springframework.level to WARNING.

Infor Cloverleaf Application Adaptor Web Services User Guide | 141DRAFT

CAA-WS logging

This example of a CXF log indicates on which URL the service is listening:

Nov 7, 2013 2:58:54 PM org.apache.cxf.endpoint.ServerImpl initDestination
INFO: Setting the server's publish address to be http://localhost:9003/xdsregistryb

These INFO level logs are useful in general and are not too verbose. None of them print on every message.
This is a method of visually verifying the URL a server is listening on.

This is a lower level log example:

Nov 7, 2013 2:59:30 PM com.infor.cloverleaf.gjdws.utils.DefaultCallback handle
FINER: password lookup for 'jesse' found the stored password

This log entry happens when using WS-Security. It indicates that the username “jesse” was successfully used
to locate a password. These lower level logs are not generally good in production. This is because they can
happen on every message and clutter the log. They can be useful, though, in development to verify things
such as the username/password lookup is working as expected, especially if security was failing.

Enable Jetty access log
All CAA-WS providers are built on Jetty. You can enable the Jetty access log onto the CAA-WS inbound/service
side. This is configured by editing the thread's application context XML file.

The application context XML file is located in the site under the javadriver directory. The file name format is
applicationContext_thread name.xml.

All provider threads listed in this file have at least one httpj:engine element, from which you can update
handlers in the engine.

Example file content:

 <httpj:engine-factory>
 <httpj:engine port="8080">
 <httpj:handlers>

 <bean class="org.eclipse.jetty.server.handler.RequestLogHandler">
 <property name="requestLog">
 <bean class="org.eclipse.jetty.server.Slf4jRequestLog"/>
 </property>
 </bean>

 <bean class="com.infor.cloverleaf.gjdws.handlers.CLWSJettyDefaultHandler"/>

Example output:

[java:java:INFO/1:thread_cmd:10/27/2020 11:18:36] org.eclipse.jetty.server.Slf4jRequestLog
write:INFO: 0:0:0:0:0:0:0:1 - -
[27/Oct/2020:17:18:06 +0000] "GET /raw/foo HTTP/1.1" 500 98
[java:java:INFO/1:thread_cmd:10/27/2020 11:18:36] org.eclipse.jetty.server.Slf4jRequestLog
write:INFO: 0:0:0:0:0:0:0:1 - -
[27/Oct/2020:17:18:36 +0000] "GET /favicon.ico HTTP/1.1" 200 1150

Infor Cloverleaf Application Adaptor Web Services User Guide | 142DRAFT

CAA-WS logging

NCSA Style:

<httpj:engine-factory>
 <httpj:engine port="8080">
 <httpj:handlers>

 <bean class="org.eclipse.jetty.server.handler.RequestLogHandler">
 <property name="requestLog">
 <bean class="org.eclipse.jetty.server.NCSARequestLog"/>
 </property>
 </bean>

 <bean class="com.infor.cloverleaf.gjdws.handlers.CLWSJettyDefaultHandler"/>

Example output:

0:0:0:0:0:0:0:1 - [27/Oct/2020:17:48:20 +0000] "GET /raw/asdf HTTP/1.1" 500 98 "" "Mozilla/5.0
(Windows NT 10.0;
Win64; x64; rv:81.0) Gecko/20100101 Firefox/81.0"

GUI option

The Jetty access log is enabled with CAA-WS providers.

There is a Log HTTP Requests option located on the WS Server dialog box.

This supports NCSA and SLF4J at the Jetty/engine leveI.

This option enables users to log the HTTP requests in these different formats:

• blank (default)
• SLF4J
• NCSA
• The relevant xml is added to applicationContext.xml. If "blank" is selected, then the logging function is

removed from applicationContext.xml.

Infor Cloverleaf Application Adaptor Web Services User Guide | 143DRAFT

CAA-WS logging

Updating CAA-WS 1.x sites to 2.0 and later

For users with CAA-WS 1.x sites, this topic describes how to update your sites to 2.0 and later.

The Update1xto2.jar upgrade tool runs the update. This is located in CAA/ws/tool. To start it, open a command
window and run these commands:

setroot
java -jar Update1xto2.jar

The tool searches your Cloverleaf for sites with CAA-WS 1.x threads, and prompts a list of sites to select which
ones to update. When a site is selected, it identifies all the CAA-WS 1.x threads that it intends to update. Then,
it prompts you whether to update these threads.

What gets updated

The upgrade tool runs this algorithm:

1 Loop over NetConfig JavaDriver protocol entries and determine process name and thread name.
2 Use process name to get the pni file, if present. Then, get START_DIR from the pni file.
3 Use thread name to get ini file, then get START_DIR from ini if there was no PNI. Fault if none present.
4 From ini, get STARTARG. For example, STARTARG=WSApplicationContext_SOAPRegistryClient.xml. Combine

START_DIR with START_ARG to locate the path to the xml config file.
5 Move the config file to $HCISITEDIR/javadriver and rename to threadname_applicationContext.xml.
6 Update ini and set STARTARG to ../threadname_applicationContext.xml . This is relative to START_DIR set

in next step.
7 Update pni and set START_DIR to javadriver/processname. Create the javadriver/processname directory,

if it does not exist.
8 Determine type from CLASS in ini. Use this to set the SUBTYPE key in NetConfig to the correct protocol:

java/ws-client, java/ws-server, or java/ws-rawclient.
9 Advise user to update any relative WSDL file paths in their config entries so that they are relative to the

new START_DIR HTTP. Otherwise, absolute paths are not affected.

Notes

As the above algorithm mentions in the last step, you must update any relative WSDL file paths. This is because
in 2.0 and later, the default, and recommended, START_DIR setting is javadriver/processname. This might not
be the START_DIR that the process had in 1.x. In this case, the relative path is different.

Infor Cloverleaf Application Adaptor Web Services User Guide | 144DRAFT

Updating CAA-WS 1.x sites to 2.0 and later

This affects only a small number of users. CAA-WS 1.0 provides an example CXF interceptor for writing an XML
declaration at the start of a SOAP Envelope on outbound messages. This was created in 1.0 with the fully
qualified name:

com.infor.cloverleaf.gjdws.utils.WriteXMLDeclarationInterceptor

This was updated in version 2.0 to:

com.infor.cloverleaf.gjdws.interceptors.WriteXMLDeclarationInterceptor

This created a package in which to group all provided sample interceptors, instead of leaving them in the
internal utilities package. The update tool was not written to look for this. Users who have these must manually
edit their XML config file and change utils to interceptors in the package name.

Infor Cloverleaf Application Adaptor Web Services User Guide | 145DRAFT

Updating CAA-WS 1.x sites to 2.0 and later

Migrating IHB threads to CAA-WS

This section provides the necessary guidelines for migrating from IHB threads to CAA-WS threads.

For configuration files and WS-Security, there is no requirement for a special configuration. These files do
not use WS-Security.

Differences between IBMIME and CAA-WS messages
An ibmime message is a length-encoded message containing the main message being transported, along with
any transport headers and attachments. Through the use of the ibmime API, these parts of a message are
extracted and processed by Tcl code.

The CAA-WS message content is the main message being transported. This requires no API methods to access
that content. This can be directly sent to an xlate process or processed directly in Tcl.

The transport headers and other metadata, including any attachments, are encoded using normal Tcl keyed
lists in the message’s USERDATA attribute.

To migrate ibmime code to CAA-WS code with respect to the message content, API calls into the ibmime object
must be changed. This is because they must access the same data within the message content itself or the
USERDATA content.

This is accomplished where the IHB thread uses the standard example procs. These take the message going
through Cloverleaf and wrap or unwrap it with ibmime. Then, it passes the message body along. Examples of
standard procs are IBEnvelopeIn, IBClientEnvelopeOut, and IBServerEnvelopeOut.

For these cases, you can remove those procs, because the CAA-WS message content is already the main
message to be passed. There is no requirement for wrapping or unwrapping.

The process is more complicated in cases using other Tcl procs.

For example, a Tcl proc accesses attachments, attachment headers, transport headers, or transport statuses.
The Tcl code must be converted to access those from USERDATA.

Infor Cloverleaf Application Adaptor Web Services User Guide | 146DRAFT

Migrating IHB threads to CAA-WS

WSDL files
IHB does not require that you specify WSDL files when working with a client or server.

CAA-WS, though, requires WSDL files to start client dispatches or service endpoints. If a WSDL file is not
present, then one must be created.

Server URLs
For IHB, to direct the message to the appropriate thread, IHB listens on URLs. For example, http://localhost:
20210/IB/servlet/runHXML?ibsite=mysite&ibthread=mythread.

For CAA-WS, only one thread can listen to a given port at a time.

Two IHB threads cannot be replaced with CAA-WS threads and have those CAA-WS threads respond to the
same URLs on which the IB threads are listening.

Such a thread can have multiple endpoints listening on that port and an endpoint can listen on any URL. It
can listen for messages on http://localhost:20210/IB/servlet/runHXML, but it does not do any branching
based on the query string ?ibsite=mysite&ibthread=mythread.

Configuration files
Security configuration, for example, threading configuration, takes place in different configuration files in
CAA-WS than in IHB.

WS-Security
For IHB, WS-Security configuration takes place in an IHB GUI.

To set up WS-Security, CAA-WS requires manual editing of an XML configuration file or WS-Policy file generation
in the GUI matching WS-Security requirements.

CAA-WS adds support for UsernameToken processing, SAML, and other technologies.

Server thread example
This example converts the IHB example server wsdlserver3 to a CAA-WS thread.

Infor Cloverleaf Application Adaptor Web Services User Guide | 147DRAFT

Migrating IHB threads to CAA-WS

Because of the differences between IHB and CAA-WS, some changes are required.

Message differences

In this example:

• The inbound thread is "LabIn".
• The inbound Tcl proc is parseGenerateMsg.
• The trxID UPoC is getSOAPActionTrxId.
• The outbound Tcl proc is LabResultOut.

The parseGenerateMsg proc contains this code:

set cont [msgget $mh]
 # parse the input ib Mime message
set ih1 [ibmimecreate $cont]
 # the 1st part (Part ID = 0) content is XML message
set data [ibpartcontentget $ih1 0]
 # set the new message content as the inbound Cloverleaf message
msgset $mh $data
msgmetaset $mh USERDATA [ibmimeheaderget $ih1 soapaction]

This extracts the message content from the ibmime package and sets that content as the content of the
Cloverleaf message. Then, it sets USERDATA as the SOAP action.

The same thing can be performed in CAA-WS by removing this Tcl proc and setting the Cloverleaf TrxID
Determination option to be SOAPACTION.

The getSOAPActionTrxId proc:

• Reads the USERDATA to get the SOAP action.
• Runs it through a table lookup, to get a shorter name for the trxID.
• Sets that lookup value as the trxID.

This happens with no Tcl coding by:

• Removing these procs.
• Changing the routing to use the literal SOAP action values.
• Setting the option in the CAA-WS configuration to use SOAP action as the TrxID.

The LabResultOut outbound Tcl proc is:

set cont [msgget $mh]
 # create an empty ib Mime object
set ih1 [ibmimecreate]
 # add ib Mime headers
ibmimeheaderadd $ih1 "IBStatus" "APP_RESP"
ibmimeheaderadd $ih1 "Content-Type" "multipart/mixed"
 # create the 1st part of this ib Mime
set phl [ibpartcreate $ih1]
 # add headers of the 1st part
ibpartheaderadd $ih1 $phl "Content-Type" "text/xml"
 # enveloping message into soap.
set soapenv $cont
 # add content of the 1st part.
ibpartcontentset $ih1 $phl $soapenv
msgset $mh [ibmimeencode $ih1]

This functions the same as the standard Tcl proc IBServerEnvelopeOut.

Infor Cloverleaf Application Adaptor Web Services User Guide | 148DRAFT

Migrating IHB threads to CAA-WS

Because this wraps the message in ibmime, you can remove this Tcl proc and send the unmodified soap
envelope back to the CAA-WS Provider code.

WSDL folder and server URLs
The sample included with IHB has a wsdl_files folder that has a wsdlserver3 subdirectory containing the
WSDL along with related xsd files.

Assign that WSDL to the CAA-WS Provider configuration.

Server URLs

For changing only one thread, change the URL to http://localhost:8080/wsdlserver3.

Configuration files and WS-Security

There is no requirement for special configuration here, as these files do not use WS-Security.

Making the changes

Required changes are only to the LabIn thread and consist of:

• Remove those three Tcl procs from it and change the routing to use the literal SOAP action values.
• Set up the CAA-WS configuration to use the WSDL and have it use the SOAP action as the trx ID.
• Convert it to a java/ws-server protocol thread.

Removing Tcl procedures and changing routing values
On the Network Configurator's Thread tab, you can:

• Remove the inbound data procedures and outbound reply proc.
• Change the Transaction ID determination format to the default FRL setting.

On the Network Configurator's Route Messages tab, you can change the routes to use the SOAP actions. These
values are found in these lines of the WSDL on the tab:

• soap:operation soapAction="http://www.infor.com/LabResult/GetLabResult"/

• soap:operation soapAction="http://www.myCompany.com/MyService/GetMyOutput"/

Infor Cloverleaf Application Adaptor Web Services User Guide | 149DRAFT

Migrating IHB threads to CAA-WS

Converting to CAA-WS server thread
1 Create a new LabIn folder under the site.
2 Copy the three WSDL and XSD files from the sample's wsdl_files/wsdlserver3 folder into the LabIn folder.

The folder contains a WSDL and two XSD files.
3 In the Cloverleaf IDE, change the LabIn thread’s protocol to java/ws-server and click Properties. This

opens a blank configuration screen.
Note: If you are using Cloverleaf 6.0.1, then you must click OK on the blank configuration screen. Then,
you click Apply for the thread and reopen the Properties dialog box. This is due to a bug that was fixed
in Cloverleaf 6.1 and later versions.

4 Create a new SOAP server using the WSDL in the LabIn folder and set it to MESSAGE mode. This is because
the rest of the site is expecting a full SOAP envelope.

5 Set the address field to any URL on which it should listen. If this is the only IB server, then you can replace
IB without having the client change URLs. This is accomplished by setting the URL to be http://localhost:
20201/IB/servlet/runHXML. The query string is ignored, but if this is your only thread that does not matter.

6 Click OK. This returns you to the main Properties dialog box.
In this example, these changes have been made to the defaults:
• The WSDL Location is changed to a relative path. Relative paths start at the working directory for

the thread, which is the javadriver/processname folder. By doing this, the site can deploy on other
servers without any requirement to update the absolute path.

• Message logging is enabled. This is for debugging.
• Cloverleaf TrxId Determination is set to SOAPACTION. This replaces the functionality of the Tcl proc

that was removed.

7 Click OK to close the dialog box. Then apply the changes and save your NetConfig file.

Testing the changes
1 Save any open files, such as NetConfig, and start the labresult thread.
2 The process should show these lines, indicating this service was started:

Nov 5, 2013 11:29:30 AM org.apache.cxf.service.factory.ReflectionServiceFactoryBean buildSer
viceFromWSDL
INFO: Creating Service {http://www.quovadx.com/LabResult}LabResult from WSDL:
..\..\LabIn\LabResult3.wsdl
Nov 5, 2013 11:29:30 AM org.apache.cxf.endpoint.ServerImpl initDestination
INFO: Setting the server's publish address to be http://localhost:8080/wsdlserver3

3 With the service running, specify this in a browser to get a WSDL: http://locahost:8080/wsdlserver3?
wsdl.
• A WSDL file for this service displays.
• There is also a log entry for the request in the Cloverleaf log.

4 Use a SOAP test client, for example, SOAP UI, to consume the WSDL to verify the service is working.

Infor Cloverleaf Application Adaptor Web Services User Guide | 150DRAFT

Migrating IHB threads to CAA-WS

5 After changing the URL to http://127.0.0.1:8080/wsdlserver3, sending a message and getting a response
is successful using the same client that worked for the wsdlserver3 site. This indicates the migration was
successful. This is the best method for testing with a client that was already configured for the site you
are migrating. This is equivalent to setting up a new SOAP UI Client using the WSDL by one of these
methods:
• Directly loading it from the file system and setting the URL manually in the Client. This avoids any

display of CXF changing the WSDL to work with itself.
• Have the SOAP UI generate a client by pointing at http://locahost:8080/wsdlserver3?wsdl. This

automatically populates the service URL with the correct address.

Infor Cloverleaf Application Adaptor Web Services User Guide | 151DRAFT

Migrating IHB threads to CAA-WS

CAA-Direct

CAA-Direct is an extension to the core system functionality.

With the Generic Java driver, the engine can associate many threads with the Java protocol. This provides a
way for the engine to communicate by a public supported API with Java applications running in one or more
JVMs.

This foundation provides a platform for you to build custom Java applications that extend the core system
engine.

This is built using the Java Driver, where CAA-Direct provides:

• Support for the prevailing Direct client paradigms, including:
• Sending secure emails by SMTPS to a HISP.
• Retrieving secure emails from a HISP using POP3S or IMAPS.

• Customization points for:
• Using Tcl UPoCs to process inbound emails and create outbound ones.
• Passing the message body as a string to/from Tcl UPoCs.
• Passing metadata as a keyed list to/from Tcl.
• Developing a custom adapter for power users.

• GUI tools for help with deployment configuration for sending/retrieving emails from a HISP.
• Tutorials and sample sites.

Knowledge levels

CAA-Direct is essentially a Java mail application, and is usually configured using Spring Framework XML files.
This is beyond the Generic Java driver configuration that is required in NetConfig. Some GUIs do not support
a specialty Java mail configuration that you require. In these cases, you can configure a variety of Java mail
behaviors from an XML file instead of writing Java code.

Users with a high level knowledge of Java mail can use the GUI to understand what beans are created. Then,
the XML files can be modified with Java mail properties as required.

Users starting with Java mail can use the GUI until special Java mail properties customization is required that
this tool does not support. When this happens, use the Java mail documentation to modify your XML
configuration files. This is not required for users connecting to Direct conforming HISPs.

Infor Cloverleaf Application Adaptor Web Services User Guide | 152DRAFT

CAA-Direct

CAA-Direct architecture and flow

Similar to CAA-WS, CAA-Direct:

• Runs on a Java Driver foundation.
• Uses a Spring XML file for configuration.
• Uses USERDATA to provide inbound message metadata and outbound message overrides.
• Uses a well-known library to handle inbound/outbound message transmission. It uses Java Mail instead

of CAA-WS’s CXF.

This overlap assists CAA-WS users in adapting to CAA-Direct.

SMTP, POP3, and IMAP protocol handling are reliable with Java Mail.

Sample site

The sample site, containing TLS and non-TLS examples of POP3 and SMTP clients, is the starting point for
learning how CAA-Direct works. You can then modify the samples to create your own applications. See CAA-WS
sample sites.

Knowledge prerequisites

• Normal users follow samples and configuration guidelines. They can apply business logic in typical system
application development methodologies using Tcl API in UPoCs to employ existing system functionality.
These users should have a general understanding of the concepts behind POP3 and SMTP email protocols.
They should also know hot to use Java keystores/truststores to establish secured TCP connections.

• Power users are those who must customize processing at the email protocol level. These users are
comfortable programming in both Tcl and Java. They have a deep understanding of how certain open
source Java email technology works. For example, the Mail API.

POP3/IMAP email retrieval usage
This shows the application as a POP3, or IMAP, client that interacts with an external email server/HISP.

The POP3/IMAP client can interact with an external email server/HISP.

An email retrieval request is processed using the Java Driver thread to route, based on trxID, to two outbound
threads. The outbound threads are where the Tcl UPoCs apply the business logic.

Infor Cloverleaf Application Adaptor Web Services User Guide | 153DRAFT

CAA-Direct architecture and flow

This logic can also reside in an inbound UPoC within the Java Driver thread without involving additional
outbound threads.

POP3/IMAP retrieves email instead of receiving it. It is not strictly a server, as messages are not sent to it from
the outside world. It calls the configured email server periodically to request download of any new emails. It
receives messages from the outside world and sends them into the system as a normal inbound thread.

Due to this inbound nature, you can think of it as a server thread. This type of thread is referred to as an "Email
Retriever" thread.

CAA-Direct differs from CAA-WS in that there are no reply messages sent back to inbound system threads. For
POP3/IMAP, an inbound message on the CAA-Direct thread is only sent to the outbound threads. There is no
reply.

Source code is available for power users to modify the POP3/IMAP client if a special case arises. For example,
a situation that cannot be addressed by configuration changes.

SMTP email sending usage
An SMTP client can send emails to an external mail server/HISP.

An inbound thread can create a system message to send by email to a HISP.

CAA-Direct differs from CAA-WS in that there are no reply messages sent back to inbound system threads. For
SMTP, an outbound message on the CAA-Direct thread is sent to the mail server. After it receives an
acknowledgment, it knows it has sent the email and is finished. The ack is not returned back to the inbound
thread.

Source code is available for power users to modify the SMTP client if a special case arises. For example, a
situation that cannot be addressed by configuration changes.

Infor Cloverleaf Application Adaptor Web Services User Guide | 154DRAFT

CAA-Direct architecture and flow

CAA-Direct Application Programming Interface (API)

This topic assumes you are familiar with the system Tcl UPoC development.

The Tcl user interface is intended for implementers using a Tcl UPoC to process messages coming into the
system from CAA-Direct. Implementers can then create messages going outbound through CAA-Direct.

The Java mail API is for users who require custom behavior other than the CAA-Direct bundled POP3/SMTP
clients. The source code for the CAA-Direct clients is part of the distribution as samples.

Note: If you develop and configure with Java Mail custom clients, then the Tcl User Interface might not apply.
This is because that interface is based on the CAA-Direct bundled clients.

The Spring XML configuration interface is an XML configuration file that determines the email client behavior.
You can edit the file using the GUI tool within NetConfig or manually edit the file.

CAA-Direct USERDATA for getting information and setting
overrides
The USERDATA field in the system messages sent to and from CAA-Direct contains information that you can use
to set overrides.

For emails, ignore this field if the default settings provide what is required.

More complex Direct processing, for example, attachments or custom email headers, requires one of these:

• Reading the USERDATA on an inbound message and implementing different handling logic in UPoC code,
depending on the contents.

• Writing to the USERDATA on an outbound message to set specific email header fields, add attachments,
and others.

See USERDATA format.

SMTP versus POP3 and IMAP
These different modes have commonalities. For example, headers are present as information on inbound
messages from POP3, or IMAP, and can be used as overrides on outbound SMTP.

Infor Cloverleaf Application Adaptor Web Services User Guide | 155DRAFT

CAA-Direct Application Programming Interface (API)

POP3/IMAP inbound information
This table lists the different fields, or keys, for inbound POP3/IMAP.

An asterisk (*) in the list is the wildcard that represents any other key names not listed in the same location
of the map.

The "-" prefix represents a sub-layer. This indicates the key that follows belongs to a sub-level map under
the nearest above key that contains one less dash in the prefix.

DescriptionField (key)

This contains a map of all the raw email headers.headers

The email headers are named by the sender.
These are items such as Return-Path, To/Subject, and
other common values.
They can also contain any arbitrary value sent by the
sender. The header name is the key and the header value
is the value in the map.
Headers with multiple values can have the same key name
repeated when you use a key suffix with :: and an incre-
mental number.

-*

Content-Type is different from other email headers.
• For single part emails, this is the email header.

• For multi-part emails, this is the Content-Type taken
from the part that is used as the Cloverleaf message.

This is how Cloverleaf handles messages when they are
forwarded to the outbound side.
The global level Content-Type is controlled by other keys.

-content-type

This contains a map of fields giving parsed information
about the email message.

generalInfo

This is the "To" address.-to

This is the "CC" address.-cc

This is the "From" address.-from

This is the "ReplyTo" address.-replyTo

This is the "Email" subject.-subject

This is present if a sent date was supplied.-sentDate

A informative map that contains multi-part headers se-
lected for the Cloverleaf message. This displays only when
the email is multi-part.

payloadHeaders

This is a map of all attachments in the message.attachments

Infor Cloverleaf Application Adaptor Web Services User Guide | 156DRAFT

CAA-Direct Application Programming Interface (API)

DescriptionField (key)

Each attachment is a nested map of its components,
where the key is the identifier for the attachment.
If the attachment already has a designated identifierI
D, then that ID is used.
For example, an inline-type attachment must have a
Content-ID header. An attachment-type attachment must
have an associated file name.
If there is no existing ID, then one is automatically gener-
ated as an index number within the array of attachments.
Attachments can exist within attachments in an email.
This mechanism breaks them down into a flat array of
attachments to avoid having to parse MIME structure in
the system.
The flatting order follows the DFS algorithm. The first
part that is located without a disposition is taken as a
Cloverleaf message.

-**

This is the multi-part type that is associated with the
current attachment. This can be inline, attachment, or
null.

--disposition

This is a further nested map containing the headers for
the attachment.

--headers

The header names are the keys in this map, with the
header values being the values in the map. This is similar
to the top-level headers.

–--*

This is the same value as -content-type listed under hea
ders (above).
When forwarded to the outbound side, this value is
loaded by an SMTP protocol thread.
Note: Some headers might require regeneration if the
attachment's headers map does not function.

--content-type

This is a base64 encoded string containing the attach-
ment's content. This is used if the cloverleafAttachment
Directory field is missing or blank in the configuration
XML.
This is not populated if you specify an attachment direc-
tory in the GUI.

--content

Infor Cloverleaf Application Adaptor Web Services User Guide | 157DRAFT

CAA-Direct Application Programming Interface (API)

DescriptionField (key)

cloverleafAttachmentDirectory is populated if you
specify an attachment directory in the GUI.
If this field exists in the configuration XML, then it is sent
instead of the base64 encoded "content" field. This field
contains the file name that holds the attachment content.
This is relative to the cloverleafAttachmentDirectory that
is specified in the configuration.
The system application deletes this file after it has been
used. This is useful for improving performance relative
to base64 encoding in the case of large attachments.

--contentFile

SMTP outbound overrides
In the outbound message from the Client thread, USERDATA that is passed in overrides default behaviors and
values.

An asterisk (*) in the list is the wildcard that represents any other key names not listed in the same location
of the map.

The "-" prefix represents a sub-layer. This indicates the key that follows belongs to a sub-level map under
the nearest above key that contains one less dash in the prefix.

DescriptionField (key)

This contains a map of all the raw email headers to
override.

headers

The email headers are named by the sender.
These are items such as Return-Path, To/Subject, and
other common values.
They can also contain any arbitrary value sent by the
sender. The header name is the key and the header value
is the value in the map.
Headers with multiple values can have the same key
name repeated when you use a key suffix with "::" and
an incremental number.

-*

Infor Cloverleaf Application Adaptor Web Services User Guide | 158DRAFT

CAA-Direct Application Programming Interface (API)

DescriptionField (key)

This impacts SMTP outbound behaviors. The semantics
follow RFC 7231, section 3.1.1.5: Content-Type.
The "text/plain" and "text/html" types, and the absence
of Content-Type, causes CAADIRECT to take the Cloverleaf
message as text.
Other explicit settings cause Cloverleaf to take messages
as binary.
When charset is appended, text types transfer the online
content to the assigned UTF-8 encoding. This is a
Cloverleaf internal encoding.
Cloverleaf does not do binary encoding.
Regardless of whether charset appears in Content-Type,
the message processing is a user-defined procedure.
This Content-Type is the Cloverleaf message type. It is
not the outbound MIME message's root element type.
As long as the Cloverleaf message is not the same as the
root element, the MIME message is multi-part. The multi-
part message's type is decided by the multipartMode key.

-content-type

This is the method used to construct a MIME message.
This is composed of a Cloverleaf message and its attach-
ments.
The allowed values include mixed, related, and mixed/r
elated (default).
For details, see MULTIPART_MODE_MIXED_RELATED.

multipartMode

This contains the configuration for connecting to a spe-
cific server with a specific user name.
Typically a sender is configured in the GUI, and thus to
the underlying XML config file.
• If there is only one sender, then it is not necessary

to pass this, as that sender is used by default.
• If there are no senders in the config, then you should

pass a complete sender here. Parameters can be
passed as necessary to override existing values.

• When no senders are present, all parameters are re-
quired.

sender

For configurations with multiple senders, this uniquely
identifies which one you require to use for this message.

-id

Overrides the default host in the sender, or sets one if
there was no sender.

-host

Overrides the default port in the sender, or sets one if
there was no sender.

-port

Infor Cloverleaf Application Adaptor Web Services User Guide | 159DRAFT

CAA-Direct Application Programming Interface (API)

https://datatracker.ietf.org/doc/html/rfc7231#section-3.1.1.5
https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/mail/javamail/MimeMessageHelper.html#MULTIPART_MODE_MIXED_RELATED

DescriptionField (key)

Overrides the default user name in the sender, or sets
one if there was no sender.

-username

Overrides the default password in the sender, or sets one
if there was no sender.

-password

Overrides the specified SSL Socket Factory, or sets one
if no sender or SSL Socket Factory was specified in the
sender.
The SSL Socket Factory is identified by the ID given to it
on the GUI. This is useful for switching SSL configurations
on a per-message basis.

-socketFactory

This contains the configuration for setting typical email
parameters such as to/from/subject/and so on.
Typically, a helper is configured in the GUI, and thus to
the underlying XML config file.
• If there is only one helper, then it is not necessary to

pass this, as that helper is used by default.
• If there are no helpers in the configuration, then you

should pass a complete helper here. Some or all of
the parameters can be passed as required when
overriding the contents of an existing helper.

• If there is no helper, then you must have a minimum
of a To address.

helper

Normal email To address.-to

Normal email CC address.-cc

Normal email BCC address.-bcc

Normal email From address.-from

This is the same as normal emails. It is the address to use
when someone replies to you if the From address should
not be used.

-replyTo

Normal email subject.-subject

This is an integer priority value to indicate to the receiver
what you feel is the priority on this message.

-priority

Boolean value to validate that addresses at least conform
to the legal structure of an email address. That is, when
it has an "@" sign, no illegal characters, and so on.
This does not validate that the email address is a working
in-box.

-validateAddresses

Map of all attachments to be sent.attachments

Infor Cloverleaf Application Adaptor Web Services User Guide | 160DRAFT

CAA-Direct Application Programming Interface (API)

DescriptionField (key)

Each attachment is itself a nested map of its components
where the key is the identifier for the attachment.
The specified value is used as the file name for an attach-
ment or the Content-ID for an inline in the final outbound
email message.
Except for Content-Type, the other attachment headers
or inline are not open for arbitrary editing due to the li-
brary implementation

-*

This value decides if the attachment element (above) is
an attachment or an inline.

--disposition

This assigns the Content-Type of the element.
The default is application/octet-stream.
Alternatively, the key name can also be content-type
(case-insensitive) as a shortcut for messages that are
forwarded from an inbound POP3/IMAP protocol.

--contentType

Base64 encodes your attachment content to be sent here.
This field or contentFile is required.

--content

The file name for a file containing the attachment con-
tent.
This is used for large attachments to improve perfor-
mance versus the costs of base64 encoding.
The file name is a relative path to the system process di-
rectory or an absolute path. This field or content field is
required.

--contentFile

Infor Cloverleaf Application Adaptor Web Services User Guide | 161DRAFT

CAA-Direct Application Programming Interface (API)

CAA-Direct IDE Properties GUI

The CAA-Direct protocols are configurable similar to other protocols. You select the protocol and use the
dialog box that displays by clicking Properties to configure it. To keep the changes, click Apply and save the
NetConfig. This is the same for CAA-Direct as for other protocols.

For the CAA-Direct protocols, versus other protocols, do not put two separate Java Driver threads in the same
process. CAA-Direct is based on Java Driver. Sometimes, this can work with Java Driver, but with CAA-Direct
creates issues. They must be in separate processes. They can share with other protocols, but not other
CAA-Direct threads, or another Java Driver, such as CAA-WS.

Note: Do not change the Java Driver process working directory. When you create one of these product’s
threads in a given process, the working directory defaults to $SITEPATH/javadriver/process name. This should
not be changed as it causes errors. As all file relative paths are computed automatically when you use the
various Browse buttons to select files, this should not have a negative effect.
Note: Asterisks indicate required fields; all others are optional.

CAA-Direct is built upon the Java Driver. When CAA-Direct is installed, new protocols that are based upon
Java Driver become available in your IDE.

In the Network Configurator, Protocol lists the CAA-Direct installed protocols.

• When java/direct-sender is selected, you can create SMTP configurations.
• When java/direct-retriever is selected, you can create POP3 or IMAP configurations.

These dialog boxes automatically configure Java Driver and create the XML configuration files that configure
the CAA-Direct components.

Creating a sample sender
1 Select thejava/direct-sender protocol and click Properties. This opens a blank configuration screen

with buttons for adding sender configuration entries.
2 Click New SMTP Sender to create a new blank SMTP configuration entry.

Sender object's sample site "GreenMailServer" test server
This is an email server that runs in memory. When it gets shut down, all messages are destroyed.

Infor Cloverleaf Application Adaptor Web Services User Guide | 162DRAFT

CAA-Direct IDE Properties GUI

SMTPS port is 3465. All ports are standard plus 3000. For example, SMTPS is 465+3000.

Sample user names/passwords are configurable. This example uses the default cloverleaf/gofish.

A “helper” is also present, including an SSL configuration.

A sender object’s purpose is to define all the configuration information necessary to make a connection to
an SMTP server and send email to it.

• If only one is present in a configuration, then it is automatically used.
• If multiple are present, then USERDATA must be sent to identify which sender to use for the current message.

This configuration specifies the Host, Port, Username, and Password are required to connect to the SMTP
server and have email sent to it.

Use SSL indicates whether to use SSL. If it is selected and there is no SSL Config, then the default Java settings
are used to make the connection.

In this example, the SSL configuration is added later, so that you can return and specify that configuration.

In rare cases, the client is supposed to connect to an unencrypted SMTP port and then issue the STARTTLS
command. This negotiates a secure connection for the ensuing conversation. This is chosen with Use StartTLS.
It can also use SSL Config for configuring a truststore, and perhaps a keystore.

Sender's logical view
The properties of this Sender are shown on the right panel, where they can be specified or selected.

Pausing over a property opens a tooltip explaining the property.

This type of view is referred to as a logical view. This is because the underlying configuration can be made up
of multiple components with various structures. The view displays them as one set of fields.

For a list of logical view objects and their descriptions, see Logical items and their fields.

Configuration entries, for example, the sender, can be deleted by right-clicking the tab and selecting delete
this tab.

Additional sender configuration items
In addition to New SMTP Sender, New Email Helper, and New SSL Socket Factory are also available.

• New Email Helper
An email helper is a configuration object which stores commonly used email fields. This can be used to
define the To, From, cc, bcc, Subject, ReplyTo, and main body text of an email. This saves you from setting
these fields in the USERDATA overrides.
• If only one helper is present, then it is used by default when sending email.
• If multiple helpers are present, then USERDATA must be sent to distinguish which helper to use.

Infor Cloverleaf Application Adaptor Web Services User Guide | 163DRAFT

CAA-Direct IDE Properties GUI

• If no helpers are present, then USERDATA must be sent to define all the email fields to set. To, From,
and Subject are a minimum. As To/From/Subject are typically used for an email, the application
sends it with only a To address. This creates a From address for you. For example, if a From address
is not specified, then it uses the logged in username. For Linux, this is hci@yourmachine.com. Windows
would use hciuser@yourmachine.com.

• New SSL Socket Factory
This defines the parameters necessary to create secure socket connections to a mail server. This is
common to senders and retrievers.
The minimum requirements for SSL Socket Factory are these entries:
• Id is used to define a unique name within the thread for the SSL Socket Factory. This ID is referenced

by the SMTP (POP3 or IMAP, in case of retriever) instances to specify their security connection. The
list displays in the SSL Config boxes on the SMTP, POP3, and IMAP configuration tabs.

• Truststore File is the path to the truststore file, relative to the process directory. An absolute path
also works.

• Truststore Password is the password to unlock the truststore.

Other fields are explained in Logical items and their fields.

For the sample sender, connecting to the test server requires the provided truststore. This is available in the
direct_samples site.

To finish the sample client, return to the SMTPS tab and specify this SSL configuration entry. If Use SSL is
not selected, then the tab is named SMTP. The sample client can now make a secure SSL connection to the
local test server. This is part of the sample site. A message sent to this thread is sent as an email to the To
address given in the helper configuration.

Creating a sample retriever
This is similar to a POP3S client, which is secure POP3. The procedure is the same for an IMAPS client, except
that you click New IMAP Retriever to start instead. Asterisks indicate required fields, all others are optional.

1 Select thejava/direct-retriever protocol and click Properties. This opens a dialog box with buttons to
add retriever configuration entries.

2 Click New POP3 Retriever to create a new blank POP3 config entry.

Retriever object's sample site GreenMailServer test server
This is an email server that runs in memory. When it gets shut down, all messages are destroyed.

The POP3S port is 3995. All ports are standard plus 3000. For example, POP3S is 995+3000. IMAP is 3993.

Sample user names/passwords are configurable, but this example uses the default drsmith/doctor. This is
distinct from the cloverleaf/gofish account that is used for SMTP.

An SSL Config is also present.

Infor Cloverleaf Application Adaptor Web Services User Guide | 164DRAFT

CAA-Direct IDE Properties GUI

A retriever object’s purpose is to define all the configuration information necessary to make a connection to
a POP3 server. It also retrieves email for a specific user account. Email retrieval happens as often as is specified
in the Retrieve intervalfield. If this is blank, then the default is 30 seconds. You can have multiple
configurations. If this is the case, then they are all processed on every retrieve interval.

• This configuration specifies the Host, Port, Username, and Password for connecting to the POP3 server
and retriever email for that account.

• The Use SSL check box determines whether to use SSL. If this is selected and there is no SSL Config, then
the default Java settings are used to make the connection. In this example, the SSL configuration is added
later, and then you can return and specify that configuration.

• Because you can have multiple configurations, it is useful to set the TrxId based on a field so that you
can route messages appropriately. This sample uses the From email field as an example.

• If an attachment directory is specified, then email attachments are written into this directory instead of
as base64 encoded data in the USERDATA.

• The Cloverleaf Log Exceptions setting is enabled. This is useful to know if some POP3 connections are
failing and why. For example, if you have multiple connections or a server is regularly offline, then it is
better to set this value to false. By doing this, the log is not filled with expected exceptions.

Retriever's logical view
The properties of this retriever are shown on the right panel, where they can be specified or selected.

• Pausing over a property opens a tooltip explaining the property.
• This type of view is referred to as a logical view. This is because the underlying configuration can be made

up of multiple components with various structures. The view displays them as one set of fields.

Configuration entries, such as the retriever, can be deleted by right-clicking the tab and selecting delete this
tab.

Additional retriever configuration items
Other retriever items are:

• Retrieve Interval
This is how often the POP3, or IMAP, configurations are polled for new email messages. If cleared, then
it defaults to every 30 seconds.

• New SSL Socket Factory
This defines the parameters necessary to create secure socket connections to a mail server. This is
common to senders and retrievers.
At a minimum, the SSL Socket Factory requires these entries:
• Id is used to define a unique name within the thread for the SSL Socket Factory. The ID is referenced

by the POP3 or IMAP (or SMTP, in case of sender) instances to specify their security connection. The
list shows up in SSL Config on the SMTP, POP3, and IMAP configuration tabs.

Infor Cloverleaf Application Adaptor Web Services User Guide | 165DRAFT

CAA-Direct IDE Properties GUI

• Truststore File is the path to the truststore file, relative to the process directory. An absolute path
also works.

• Truststore Password is the password to unlock the truststore.
Other fields are explained in Logical items and their fields.
For this sample, connecting to the test server requires the provided truststore. This is available in the
direct_samples site.
To finish the sample client, return to the POP3S tab. Then, specify the SSL Configentry. The tab is named
POP3 if the Use SSL check box is not selected.
The sample client can now make a secure SSL connection to the local test server. This is part of the sample
site. Depending on the retrieve interval setting, emails for the drsmith user are retrieved. These emails
are converted into system messages and sent into the engine.

Logical items and their fields
This table shows the sender SMTP items:

DescriptionFieldItem

Sender

Uniquely identifies this sender.
Shown on display under the tab
name. Used in USERDATA sender
parameter to select the sender to
use if there is more than one
present. Can be left blank if there
is only one sender.

Id

DNS name or IP address of server
to which to connect.

Host

Port on the server to which to
connect.

Port

The email account with which to
authenticate.

User name

Infor Cloverleaf Application Adaptor Web Services User Guide | 166DRAFT

CAA-Direct IDE Properties GUI

DescriptionFieldItem

If selected, then the password you
specify here must be the encoded
version. To find the encoded ver-
sion, start the process with an
unencoded version. One of the
first log entries that is printed out
shows the encoded value. Replace
your password here with that en-
coded value and check the box.
This stores the encoded password
in the XML config file, and not in
the clear text password.

Password Encoded

If selected, then the connection
made to the server is performed
using SSL.

Use SSL

If selected, then the connection
to the server is initially made us-
ing unsecure SMTP. After the con-
nection is made, it issues the
STARTTLS command. This converts
the connection to a secure connec-
tion. It errors out if this command
is unavailable or does not suc-
ceed. This is a rare configuration
possibility. Use this only if there
is no normal SSL/TLS port with
which to connect and if the SMTP
port supports it.

Use StartTLS

The name of the SSL socket facto-
ry entry to use to make the SSL
connection. The menu is populat-
ed with the list of SSL socket fac-
tory entries created. If left blank,
then Java default SSL parameters
are used.

- SSL Config

If set to "normal debug," then this
prints the email protocol conver-
sation with the server. This is use-
ful for debugging with a server
that is not working properly. If set
to "normal+auth debug," then the
authentication portion of the
conversation is also displayed.
User name/password is hidden
when set to normal debug.

Mail Debug

Infor Cloverleaf Application Adaptor Web Services User Guide | 167DRAFT

CAA-Direct IDE Properties GUI

DescriptionFieldItem

Helper

Uniquely identifies this helper.
Shown on display under the tab
name. Used in USERDATA helper
parameter to select the helper to
use if there is more than one
present. This can be left blank if
there is only one helper.

Id

The normal email To address. This
can have multiple values when
separated by a comma.

To

The normal email CC address. This
can have multiple values when
separated by a comma.

CC

The normal email BCC address.
This can have multiple values
when separated by a comma.

BCC

The normal email From address.
Single valued.

From

The normal email Reply To ad-
dress. Single valued.

Reply To

Text string for the email subjectSubject

The default email message body.
This is used if the outbound mes-
sage is blank. It is useful to say
things such as "see attachment"
when the important part of a
message is always in an attach-
ment.

Text

Integer priority value from 1 to 20
to indicate to the recipient the
importance of this message.

Priority

If selected, then the email address-
es that are used in the message
are checked to see if they conform
to the email RFC format. For exam-
ple, someone@somewhere.do-
main. It does not validate whether
the address is a valid mail box, as
this is impossible.

Validate Addresses

Infor Cloverleaf Application Adaptor Web Services User Guide | 168DRAFT

CAA-Direct IDE Properties GUI

DescriptionFieldItem

SSL Socket Factory

Required identifier. Must be
unique within the thread configu-
ration. Used to provide an identi-
fier in the SSL Config menu in the
SMTP config.

Id

The preferred level of SSL/TLS to
use when negotiating the secured
socket connection. Some earlier
email servers require SSLv3. Use
this first if your SSL connection is
failing with an obscure error mes-
sage.
Note: To use TLSv1.1 or TLSv1.2,
the process must be running
within a Java 7 JVM. Cloverleaf 6.1
and above already run Java 7.

Secure Socket Protocol

Password for keys within the key-
store.

Key Password

Relative path to the keystore from
the process directory. This can al-
so be an absolute path.

Keystore File

Password for the entire keystore.Keystore Password

Combo box containing JKS, JCEKS,
PKCS12.

Keystore Type

Relative path to the truststore
from the process directory. This
can also be an absolute path.

Truststore File

Password for the truststore.Truststore Password

Combo box containing JKS, JCEKS,
PKCS12.

Truststore Type

This table shows retriever POP3/IMAP items:

DescriptionFieldItem

Retriever

Uniquely identifies this retriever.
Shown on display under the tab
name. Optional field for GUI orga-
nization use only.

Id

Infor Cloverleaf Application Adaptor Web Services User Guide | 169DRAFT

CAA-Direct IDE Properties GUI

DescriptionFieldItem

DNS name or IP address of server
to which to connect.

Host

Port on the server to which to
connect.

Port

The email account with which to
authenticate.

User name

If selected, then the password you
specify here must be the encoded
version. To find the encoded ver-
sion, start the process with an
unencoded version. One of the
first log entries that is printed out
shows the encoded value. Replace
your password here with that en-
coded value and check the box.
This stores the encoded password
in the XML config file, and not in
the clear text password.

Password Encoded

If selected, then connection made
to server is performed using SSL.

Use SSL

The name of the SSL socket facto-
ry entry to use to make the SSL
connection. The menu is populat-
ed with the list of SSL socket fac-
tory entries created. If left blank,
then Java default SSL parameters
are used.

- SSL Config

Combo box containing NULL, TO,
FROM, SUBJECT, VALUE. NULL means
do not set one. VALUE means use
the value from the Cloverleaf
TrxId Valuefield. The rest are the
values from the email field of the
same name.

Cloverleaf TrxId Determination

If Cloverleaf TrxId Determina-
tion is set to VALUE, then this value
is used as the TrxId. This is useful
if you have multiple POP3, or
IMAP, accounts in the same config-
uration, so messages can be rout-
ed differently based on account.

Cloverleaf TrxId Value

Infor Cloverleaf Application Adaptor Web Services User Guide | 170DRAFT

CAA-Direct IDE Properties GUI

DescriptionFieldItem

Relative or absolute path to store
inbound attachments. If this is
present, then attachments are
stored in this directory as files. If
left blank, then attachments are
inside the USERDATA as base64 en-
coded content.

Cloverleaf Attachment Directory

Should the system log exceptions
or not. The default is "false." This
is useful to know if some POP3
connections are failing, and why.
If you have multiple connections
or a server is regularly offline, then
set this value to "false". By doing
this, the log is not filled with ex-
pected exceptions.

Cloverleaf Log Exceptions

If set to normal debug, then this
prints the email protocol conver-
sation with the server. This is use-
ful for debugging with a server
that is not working properly. If set
to normal+auth debug, then the
authentication portion of the
conversation is also displayed.
User name/password is hidden
when set to normal debug.

Mail Debug

SSL Socket Factory

Required identifier. Must be
unique within the thread configu-
ration. Used to provide an identi-
fier in the SSL Config menu in the
POP3 or IMAP config.

Id

The preferred level of SSL/TLS to
use when negotiating the secured
socket connection. Some earlier
email servers require SSLv3. Use
this first if your SSL connection is
failing with an obscure error mes-
sage.
Note: To use TLSv1.1 or TLSv1.2,
the process must be running
within a Java 7 JVM.

Secure Socket Protocol

Infor Cloverleaf Application Adaptor Web Services User Guide | 171DRAFT

CAA-Direct IDE Properties GUI

DescriptionFieldItem

Password for keys within the key-
store.

Key Password

Relative path to the keystore from
the process directory. This can al-
so be an absolute path.

Keystore File

Password for the entire keystore.Keystore Password

Combo box containing JKS, JCEKS,
PKCS12.

Keystore Type

Relative path to the truststore
from the process directory. This
can also be an absolute path.

Truststore File

Password for the truststore.Truststore Password

Combo box containing JKS,
JCEKS,PKCS12.

Truststore Type

Infor Cloverleaf Application Adaptor Web Services User Guide | 172DRAFT

CAA-Direct IDE Properties GUI

CAA-Direct usage scenario

This section describes the different flows that you can use to develop applications that run on CAA-Direct.

Basic flow

When building an application using CAA-Direct, the user’s main tasks are:

1 Create a system site and add a CAA-Direct java/direct-* protocol thread.
2 Gather the necessary artifacts to configure your service or client. These could be keystores/truststores

for doing secure communications, host/port for your HISP (email server), user name/password for email
account to use, and so on.

3 Use the Properties dialog box to configure your thread with the artifacts that were collected in the
previous step.

4 Create the Tcl UPoCs that have the business logic of processing inbound email from a POP3, or IMAP,
client. You can also create Tcl UPoCs to generate outbound email content destined for an SMTP client.

Tcl UPoCs are created to process messages using the API. See CAA-Direct Application Programming Interface
(API).

Alternate flows

These show how you can build Direct senders or retrievers.

• Simple Message Sender
• Message Sender with an attachment
• Simple message retriever
• Message retriever for an attachment

Simple Message Sender
This creates an SMTP client that sends the message you pass it.

1 Select the java/direct-sender protocol.
2 Locate the host/port information for your HISP. If the port is not mentioned, then leave it blank when

creating the sender and use the default.
3 Configure a Sender, Helper, and SSLSocket Factory.

Infor Cloverleaf Application Adaptor Web Services User Guide | 173DRAFT

CAA-Direct usage scenario

4 Create an inbound thread to send this message. It is not necessary to write any Tcl if the message can be
sent directly as the email message body.

Message Sender with an attachment
This is the same as the "Simple Message Sender", except that it sends the message as an attachment.

These changes cause the message to be sent as an attachment instead of the email main body.

1 Select the java/direct-sender protocol. Add a default text message to the Helper, such as see attachment.
2 Locate the host/port information for your HISP. If the port is not mentioned, then leave it blank when

creating the sender and use the default.
3 Configure a Sender, Helper, and SSLSocket Factory.
4 Create a UPoC that reads the outbound message, converts it to base64, and adds it into the USERDATA as

an attachment. Have the UPoC also set the message content to blank so that the default message that
is configured in the Helper is used.

Simple message retriever
This is the same as Basic flow, but creates a POP3 client for retrieving messages with no attachments.

See CAA-Direct usage scenario.

Creating IMAP is the same, except the retriever that is configured is IMAP, instead of POP3.

1 Select the java/direct-retriever protocol.
2 Locate the host/port information for your HISP. If the port is not mentioned, then leave it blank when

creating the sender and use the default.
3 Configure a Retriever and an SSL Socket Factory.
4 Route the messages to another thread for processing. The inbound email message is the Cloverleaf

message content. It is not necessary to write any Tcl procs.

Message retriever for an attachment
This expects the interesting part of the message to be in an attachment.

1 Select the java/direct-retriever protocol.
2 Locate the host/port information for your HISP. If the port is not mentioned, then leave it blank when

creating the sender and use the default.
3 Configure a Retriever and an SSL Socket Factory.

Infor Cloverleaf Application Adaptor Web Services User Guide | 174DRAFT

CAA-Direct usage scenario

4 Create a UPoC that processes the incoming message and looks in the USERDATA for the attachments key.
In the case of receiving multiple attachments, locate the appropriate one and then process. If no
attachment directory is set, then the attachment is base64 encoded. A procedure can be to base64 decode
the attachment content. Then, set that value as the system message, overwriting the unimportant email
message body such as see attachment.

Infor Cloverleaf Application Adaptor Web Services User Guide | 175DRAFT

CAA-Direct usage scenario

CAA-Direct sample sites

Sample sites are “best practice” tools that are self-contained units to help you understand how to use various
parts of the functionality. This section describes the details of these sites and how they are configured.

You can gain the most knowledge by reviewing this documentation alongside the sample’s configuration in
the Network Configurator. Take note of these parts of the sample sites:

• XML files that are created for the sample sites in the javadriver subdirectory
• Surrounding configuration in the NetConfig file
• Relevant Tcl procs

This, combined with running the samples and observing the logs produced, provides a solid basis for starting
real projects, testing, and debugging.

Samples are provided in a single sample site called direct_samples.

This sample site contains examples of SMTP, SMTPS, POP3, POP3S, and IMAPS threads.

In the sample site layout:

• Inbound threads are on the left.
• Outbound threads are on the right.
• The CAA-Direct threads all connect to the GreenMailServer test server to send and retrieve messages.

SMTP
SMTP is used to send emails. SMTPS is used to send emails securely. Use this when using CAA-Direct to connect
to a Direct HISP. A request can be one or both of:

• A message sent in the email message body.
• The message can be an attachment or even multiple attachments.

In both the SMTP and SMTPS samples, there is an attachmentSource file which is used as the content of a
single attachment. The message sent to the inbound file protocol thread is the email message body. The
SMTP sample additionally shows how to use USERDATA to override the default To address for the email.

The SMTPfiles thread's Inbound tab has these parameters:

• TPS Inbound Data: addRequestAttachment
• Trx ID Determination Format: Fixed Record Layout (frl)
• EDI Batch: None

Infor Cloverleaf Application Adaptor Web Services User Guide | 176DRAFT

CAA-Direct sample sites

This is a Fileset-local protocol thread which watches a directory for a file to show up and then sends the file
to the SMTP thread.

The addRequestAttachment Tcl proc is a proc that adds an attachment to the USERDATA, and continues the
message. At the top of the file is a switch to configure the attachment to be stored as a file and read by
CAA-Direct. It can also be passed directly in USERDATA as base64 encoded content.

Using base64 is acceptable for smaller attachments, but the CPU and memory overhead for larger files is not
good for performance. It is recommended to use the file approach.

Using the file mechanism runs these relevant lines:

file copy attachmentSource attachmentSourceTemp
keylset myattachment contentFile attachmentSourceTemp
keylset attachments myattachment $myattachment
keylset userDataRequest attachments $attachments
msgmetaset $mh USERDATA $userDataRequest

This performs these tasks:

• Copies the attachmentSource test file to attachmentSourceTemp. This is because when CAA-Direct sends
the email, it deletes the file used as the attachment. Because you require the sample to run repeatedly,
first make a copy of the attachment source file.

• Creates a single attachment named myattachment with the contentFile key set to the string attach
mentSourceTemp. When CAA-Direct sees this attachment, it reads attachmentSourceTemp to get the
attachment bytes and then deletes that file.

• Adds this single attachment to a keyed list of attachments under the name myattachment. If you have
multiple attachments, then add them into this attachments variable under different keys. The names
make no difference, other than they are what is used in the attachment header values as the name of
the attachment.

• Adds this keyed list of attachments to a keyed list to be sent as the entire USERDATA. If you have other
USERDATA overrides, then those can be added to this userDataRequest variable. For example, changing
the list of To email addresses.

• Sets this newly created keyed list variable as the message’s actual USERDATA value.

The SMTP thread's protocol properties are:

• Id: exampleMessageHelper
• From: cloverleaf@localhost.com
• Subject: test CAA-Direct message
• Text: This is the default message text, if Cloverleaf sends nothing.

All other fields are blank.

The Helper does not have a default To address. This means the Tcl proc must set USERDATA to specify the To
address. The SMTP tab has the configuration necessary to connect to the test server.

The Outbound tab's properties are:

• TPS Outbound Data: updateOutboundMessage dumpMsg
• Retries: -1
• Interval: 10

Infor Cloverleaf Application Adaptor Web Services User Guide | 177DRAFT

CAA-Direct sample sites

The updateOutboundMessage proc is an example of how to use USERDATA to override the outbound email’s To
address. These are the relevant lines of Tcl:

set userData [msgmetaget $mh USERDATA]
keylset userData helper.to drsmith@localhost.com
msgmetaset $mh USERDATA $userData

This results in these tasks:

• Get the current value of USERDATA so it can be added to instead of overwritten.
• Create a helper.to key that sets the email To address to be drsmith@localhost.com. This shorthand

creates a helper list with a to key under that.
• Set the message’s USERDATA to be this new updated value.

The dumpMsg proc is frequently used in the samples. It dumps the message and then continues the message.
This is useful for showing the message and USERDATA that are going to the CAA-Direct code. This can help you
understand the details of how sending an email works.

The sample site sends a message when a text file is copied that must be sent as the email message body into
the process’s request directory. You can look at the log file to see the logs created.

SMTPS
The SMTPS example is the same as the SMTP example except for these points:

• It does not have a Tcl proc to update the To address. Instead, that is configured statically in the Helper
config. The attachment handling is the same.

• It has SSL configured to send the message securely to the mail server.

Selecting SSL (sslSocketFactory): has these parameters:

• Id: sslSocketFactory
• Secure Socket Protocol: This has SSL configured to SSLv3
• Truststore File*:../../../javadriver/testdirectkeystore.jks
• Truststore Password*: changeit
• Truststore Type: JKS

It has a truststore to authenticate the server, but no keystore because mutual authentication is not typically
required. A user name/password is required to access the email account.

Selecting SMTPS (exampleSSLSender) has these parameters:

• Id: exampleSSLSender
• Host*: localhost
• Port: 3465
• Username*: cloverleaf
• Password*/Confirm Password*:These must be specified.
• Use SSL: This is selected.
• SSL Config: sslSocketFactory

Infor Cloverleaf Application Adaptor Web Services User Guide | 178DRAFT

CAA-Direct sample sites

• Mail Debug: disabled

This is almost the same as the SMTP thread’s SMTP tab. The exception is that the port is different, being set
to the test server’s SMTPS port. Another exception is that Use SSL is selected with SSL Config that is set to
the name of the SSL Socket Factory from the previous tab. This is how an SMTP sender links to a specific SSL
configuration.

Another difference from the SMTP sample is that the Mail Debug setting is disabled, indicating the conversation
with the email server is not logged.

Selecting Helper () has these parameters:

• To: drsmith@localhost.com
• From: cloverleaf@localhost.com
• Subject: test message
• Text: This is the test text

The To address is statically set to drsmith@localhost.com. It is not set in the Tcl proc, such as the SMTP sample.
That Tcl proc is removed.

POP3
POP3 is used to retrieve emails.

POP3S is used to retrieve emails securely. Use this when using CAA-Direct to connect to a Direct HISP.

An email can be one or both of:

• A message sent in the email message body, which is turned into the system message body.
• The message can be an attachment or even multiple attachments, which are linked or encoded in USER

DATA on the inbound system message.

In both the POP3 and POP3S samples, there is an attachment directory set which is used as the directory
where attachments are stored. The links to these files are available in the USERDATA. If this blank, then
attachments are base64 encoded in the USERDATA.

The retriever protocol connects to the test server and retrieves email for the drsmith user. This is the address
to which the SMTP and SMTPS samples are sent. It specifies an attachments directory to store the attachments,
and enables Mail Debug so you can see the conversation with the mail server about retrieving messages.
Because there is no “Retrieve interval” specified, it defaults to 30 seconds.

There are no TPS procs on this inbound thread. It raw routes the inbound message to the outbound POP3files
thread.

The POP3files thread Outbound tab has Retries configured as "-1" and Interval as "10."

It first dumps the message so that you can see the message coming in from CAA-Direct.

The next proc showInboundAttachment is a proc whose goal is to list the file names under which the attachments
have been stored. This shows you how to iterate over a list of attachments and get information about them.

Infor Cloverleaf Application Adaptor Web Services User Guide | 179DRAFT

CAA-Direct sample sites

Having the file name is sufficient to load the contents of the file into Tcl. Various actions can be made upon
the contents or they can be sent elsewhere.

The main portion of this proc is:

get the USERDATA
set userData [msgmetaget $mh USERDATA]
if there's any attachments, process them
set attachments {}
if [catch {set attachments [keylget userData attachments]}] {
 puts "no attachments"
} else {
 # attachments are set
 # get an ordered list of the keys
 set sortedKeys [lsort -dictionary [keylskeys attachments]]
 foreach {key} $sortedKeys {
 # get the attachment for this key
 set attachment [keylsget attachments $key]
 # get the contentFile in this attachment, but be careful the user didn't switch to base64
 if [catch {set contentFile [keylsget attachment contentFile]}] {
 puts "got attachment, but not contentFile, probably base64"
 } else {
 # found contentFile, print just the file as the user presumably knows the directory because
it's in the config
 set fileName [lindex [file split $contentFile] end]
 puts "for attachment $key, got file name: $fileName"
 }
 }
}

You should read through the code to understand how it achieves the prior described objectives.

Note: The use of various keyed list commands such as keylskeys are not part of standard TclX keyed list
processing. These are special keyed list commands starting with keyls instead of keyl. The difference with
these commands is that they do not treat “.” characters in key names as special tree indicators. Instead, they
are treated as normal characters.

Essentially, when using these keyls commands, key names can have dots in them. This is critical when
processing attachments whose key names are from the Content-ID header in which the attachment came.
These can have values such as my.special.attachment. With these commands, that string is a legal key name.

POP3S
The POP3S example is the same as the POP3 example except that it has SSL configured to retrieve the message
securely from the mail server. These parameters are used for SSL:

• Id: test
• Secure Socket Protocol: SSLv3
• Truststore File*: ../../../javadriver/testdirectkeystore.jks
• Truststore Password*: changeit

It is the same configuration for SSL as with the SMTPS version. It has a truststore to authenticate the server,
but no keystore. This is because mutual authentication is not required as a user name/password is required
to access the email account.

These parameters are used for POP3S:

Infor Cloverleaf Application Adaptor Web Services User Guide | 180DRAFT

CAA-Direct sample sites

• Id: simple
• Host*: localhost
• Port: 3995
• Username*: drsmith
• Password*/Confirm Password*: These must be specified
• Use SSL: This is selected
• SSL Config: test
• Cloverleaf Trxid Determination: FROM
• Cloverleaf Attachment Directory: attachments
• Cloverleaf Log Exceptions: true
• Mail Debug: disabled

This is similar to the POP3 thread’s POP3 tab. The port is different, as it is set to the test server’s POP3S port.
The Use SSL check box is selected with SSL Config that is set to the name of the SSL Socket Factory from the
previous tab.

This is how a POP3 retriever links to a specific SSL configuration. Another minor difference from the POP3
sample is that Mail Debug setting is disabled. This indicates the conversation with the email server is not
logged.

Note: You should not run the POP3, POP3S, or IMAPS samples simultaneously. This is because they are all
checking for email messages on the same account. It would be random which client received a given email.

IMAPS
The IMAPS sample is exactly the same as the POP3S sample, except using IMAPS instead.

Infor Cloverleaf Application Adaptor Web Services User Guide | 181DRAFT

CAA-Direct sample sites

CAA-Direct Portecle Keystore Management tool
(third-party)

CAA-Direct takes advantage of Java Mail’s SSL handling, which depends extensively on the usage of the Public
Key Infrastructure (PKI) technologies. Therefore, the management of X.509 digital certificates and private
keys are an essential part of the operation of these features.

CAA-Direct is written in Java. The management of PKI and certificates is influenced by the mechanism that
Java uses to manage them, using the concept of keystore and truststore.

These two types of stores are of the same internal structure, the JKS format or Java KeyStore. The distinction
between them is primarily a logical one. The keystore contains public keys and their associated private keys
that are used to authenticate self to remote partners. The truststore contains only the public keys of remote
partners that are to be trusted.

Java run time provides a command line tool keytool that is capable of managing the keystore in a variety of
ways. This includes generating a PKI key pair and its CSR (Certificate Signing Request), importing/exporting
certificates, and others.

Portecle open source GUI

The Portecle open source GUI tool provides more functionality than keytool.

One of the features in Portecle that is absent from keytool (Java SE 6.0) is the ability to import key pairs from
another keystore. This is noticeable when one is in a different format from JKS. Sometimes, it is convenient
to import key pairs in the pkcs12 format, which is used in the Microsoft and many other popular security
frameworks.

Portecle has a user-friendly GUI and is simpler to use than the command line based keytool. You should use
Portecle to manage the keystores required for the CAA-Direct SSL functionalities.

The Portecle site, http://portecle.sourceforge.net/, has additional information on how to use this tool.

Installation

Download Portecle from http://sourceforge.net/projects/portecle (click the Download link to get the latest
version) and unzip it to a directory . For example, portecle-1.7.

Alternatively, some operating systems such as Linux may already have an RPM package built for your system.

The readme file in the unzipped directory provides important information about things that must be finished
before launching the tool.

If the machine that runs this tool already has JDK/JRE 1.6 installed, then the installation is already finished.

Infor Cloverleaf Application Adaptor Web Services User Guide | 182DRAFT

CAA-Direct Portecle Keystore Management tool (third-party)

http://portecle.sourceforge.net/
http://sourceforge.net/projects/portecle

It is advisable to update the JCE unlimited strength jurisdiction policy files in the JRE. When this is finished,
Portecle can handle more key sizes or algorithms.

These policy files are downloaded from Java’s website and overwrite the same named files of the JRE
installation: local_policy.jar and US_export_policy.jar. These are underlib/security .

The readme file in the download package also provides detailed installation information.

Launching Portecle

The readme file that comes with Portecle has detailed instructions on launching.

After the correct JCE provider jar and unlimited strength policy files have been properly installed, the tool is
launched using the java -jar command.

If .jar files are associated with Java on your operating system, then you can double-click portecle.jar to
launch it.

Infor Cloverleaf Application Adaptor Web Services User Guide | 183DRAFT

CAA-Direct Portecle Keystore Management tool (third-party)

CAA-Direct logging

Logging is a developer’s first line of attack with bugs. The key to good logging is to log only what you think
you require. This keeps you from having a flood of information to sift through and perhaps losing the import
logs within.

To start with, do not enable any system engine logs when trying to debug CAA-Direct. This buries relevant
CAA-Direct logs in a flood of non-essential information. The system engine logs are useful when debugging
system engine issues. Because CAA-Direct is a Java application running on top of the engine, the normal
engine output logs tend to be unnecessary.

CAA-Direct has these useful logging options:

• Mail server conversation logging
• System message dump
• CAA-Direct internal logging

Mail server conversation logging
On the SMTP and POP3 configuration tabs, you can enable Mail Debug logging. This type of logging shows
the conversation between the email client and the email server.

The SMTP/POP3/IMAP config tabs have their own individual menus.

The values are:

• disabled

• normal debug

• normal+auth debug

+auth means that the authentication part of the conversation is not suppressed as it is with normal debug.
It shows the user name/password in plain text.

This is an example of the type of logging this produces in the process log file for the sample POP3 thread. This
is found in the inbound process log file:

DEBUG: JavaMail version 1.4.7
DEBUG: successfully loaded resource: /META-INF/javamail.default.providers
DEBUG: Tables of loaded providers
DEBUG: Providers Listed By Class Name: {com.sun.mail.smtp.SMTPSSLTrans
port=javax.mail.Provider[TRANSPORT,smtps,com.sun.mail.smtp.SMTPSSLTransport,Oracle],
com.sun.mail.smtp.SMTPTransport=javax.mail.Provider[TRANSPORT,smtp,com.sun.mail.smtp.SMTPTrans
port,Oracle], com.sun.mail.imap.IMAPSSL

Infor Cloverleaf Application Adaptor Web Services User Guide | 184DRAFT

CAA-Direct logging

Store=javax.mail.Provider[STORE,imaps,com.sun.mail.imap.IMAPSSLStore,Oracle],
com.sun.mail.pop3.POP3SSLStore=javax.mail.Provider[STORE,pop3s,com.sun.mail.pop3.POP3SSLStore,Or
acle], com.sun.mail.imap.IMAPStore=javax.mail.Provider[STORE,imap,com.sun.mail.imap.IMAPStore,Or
acle],
com.sun.mail.pop3.POP3Store=javax.mail.Provider[STORE,pop3,com.sun.mail.pop3.POP3Store,Oracle]}
DEBUG: Providers Listed By Protocol:
{imaps=javax.mail.Provider[STORE,imaps,com.sun.mail.imap.IMAPSSLStore,Oracle],
imap=javax.mail.Provider[STORE,imap,com.sun.mail.imap.IMAPStore,Oracle],
smtps=javax.mail.Provider[TRANSPORT,smtps,com.sun.mail.smtp.SMTPSSLTransport,Oracle],
pop3=javax.mail.Provider[STORE,pop3,com.sun.mail.pop3.POP3Store,Oracle],
pop3s=javax.mail.Provider[STORE,pop3s,com.sun.mail.pop3.POP3SSLStore,Oracle],
smtp=javax.mail.Provider[TRANSPORT,smtp,com.sun.mail.smtp.SMTPTransport,Oracle]}
DEBUG: successfully loaded resource: /META-INF/javamail.default.address.map
DEBUG: getProvider() returning javax.mail.Provider[STORE,pop3,com.sun.mail.pop3.POP3Store,Oracle]
DEBUG POP3: mail.pop3.rsetbeforequit: false
DEBUG POP3: mail.pop3.disabletop: false
DEBUG POP3: mail.pop3.forgettopheaders: false
DEBUG POP3: mail.pop3.cachewriteto: false
DEBUG POP3: mail.pop3.filecache.enable: false
DEBUG POP3: mail.pop3.keepmessagecontent: false
DEBUG POP3: mail.pop3.starttls.enable: false
DEBUG POP3: mail.pop3.starttls.required: false
DEBUG POP3: mail.pop3.apop.enable: false
DEBUG POP3: mail.pop3.disablecapa: false
DEBUG POP3: connecting to host "localhost", port 3110, isSSL false
+OK POP3 GreenMail Server ready
CAPA
-ERR Command not recognized
USER drsmith
+OK
PASS doctor
+OK
STAT
+OK 1 604
NOOP
+OK noop rimes with poop
TOP 1 0
+OK
Return-Path: cloverleaf@localhost.com
Received: from 127.0.0.1 (HELO USSPNJPANGBU01.infor.com); Mon Mar 10 14:41:56 PDT 2014
Date: Mon, 10 Mar 2014 14:41:56 -0700 (PDT)
From: cloverleaf@localhost.com
To: drsmith@localhost.com, drsmith@localhost.com
Message-ID: 15865423.2.1394487716825.JavaMail.jpangburn@USSPNJPANGBU01
Subject: test CAA-Direct message
MIME-Version: 1.0
Content-Type: multipart/mixed;
 boundary="----=_Part_0_15184882.1394487715184"
RETR 1
+OK
Return-Path: cloverleaf@localhost.com
Received: from 127.0.0.1 (HELO USSPNJPANGBU01.infor.com); Mon Mar 10 14:41:56 PDT 2014
Date: Mon, 10 Mar 2014 14:41:56 -0700 (PDT)
From: cloverleaf@localhost.com
To: drsmith@localhost.com, drsmith@localhost.com
Message-ID: 15865423.2.1394487716825.JavaMail.jpangburn@USSPNJPANGBU01
Subject: test CAA-Direct message
MIME-Version: 1.0
Content-Type: multipart/mixed;
 boundary="----=_Part_0_15184882.1394487715184"
------=_Part_0_15184882.1394487715184
Content-Type: multipart/related;
 boundary="----=_Part_1_20306499.1394487715278"
------=_Part_1_20306499.1394487715278
Content-Type: text/plain; charset=us-ascii
Content-Transfer-Encoding: 7bit
5632
------=_Part_1_20306499.1394487715278--
------=_Part_0_15184882.1394487715184
Content-Type: application/octet-stream; name=myattachment
Content-Transfer-Encoding: 7bit
Content-Disposition: attachment; filename=myattachment
attachment content goes here in the attachmentSource file, binary can work too
------=_Part_0_15184882.1394487715184--

Infor Cloverleaf Application Adaptor Web Services User Guide | 185DRAFT

CAA-Direct logging

This log shows the full conversation with the mail server, including user name/password. This is a helpful if
you are unsure of what you should be receiving.

Cloverleaf message dump
By calling Tcl to dump a message, you can see what is retrieved from and sent to a CAA-Direct thread.

All the sample threads use this. For outbound threads (SMTP), look on the Outbound tab for the TPS Outbound
Data UPoC. These have the dumpMsg Tcl proc, which dumps the message to the process log. For POP3 or IMAP
inbound threads, look on the Outbound tab for the TPS Inbound Data UPoC.

If you have the Mail Debug conversation logging enabled on the POP3 sample thread, then you can see the
conversation with the mail server logged. After CAA-Direct processing, it is sent to the system where the Tcl
proc dumpMsg runs. This results in this message dump being sent to the log:

[tcl :out :INFO/0: POP3files:03/10/2014 14:43:48]
[tcl :out :INFO/0: POP3files:--/--/---- --:--:--]
[tcl :out :INFO/0: POP3files:--/--/---- --:--:--] sms_ob_data Dump:
[tcl :out :INFO/0: POP3files:03/10/2014 14:43:48] msg: 0x02AED828
[tcl :out :INFO/0: POP3files:--/--/---- --:--:--] msgType : DATA
[tcl :out :INFO/0: POP3files:--/--/---- --:--:--] msgClass : ENGINE
[tcl :out :INFO/0: POP3files:--/--/---- --:--:--] msgState : OB pre-SMS (10)
[tcl :out :INFO/0: POP3files:--/--/---- --:--:--] msgPriority : 5120
[tcl :out :INFO/0: POP3files:--/--/---- --:--:--] msgRecoveryDbState: Log:update (3)
[tcl :out :INFO/0: POP3files:--/--/---- --:--:--] msgFlags : 0x8002
[tcl :out :INFO/0: POP3files:--/--/---- --:--:--] msgMid : [0.0.17055]
[tcl :out :INFO/0: POP3files:--/--/---- --:--:--] msgSrcMid : [0.0.17054]
[tcl :out :INFO/0: POP3files:--/--/---- --:--:--] msgSrcMidGroup : midNULL
[tcl :out :INFO/0: POP3files:--/--/---- --:--:--] msgHostId : 3070311904
[tcl :out :INFO/0: POP3files:--/--/---- --:--:--] msgOrigSrcThread : POP3
[tcl :out :INFO/0: POP3files:--/--/---- --:--:--] msgOrigDestThread : POP3files
[tcl :out :INFO/0: POP3files:--/--/---- --:--:--] msgSrcThread : POP3
[tcl :out :INFO/0: POP3files:--/--/---- --:--:--] msgDestThread : POP3files
[tcl :out :INFO/0: POP3files:--/--/---- --:--:--] msgXlateThread :
[tcl :out :INFO/0: POP3files:--/--/---- --:--:--] msgSkipXlate : 0
[tcl :out :INFO/0: POP3files:--/--/---- --:--:--] msgSepChars :
[tcl :out :INFO/0: POP3files:--/--/---- --:--:--] msgNumRetries : 0
[tcl :out :INFO/0: POP3files:--/--/---- --:--:--] msgGroupId : 0
[tcl :out :INFO/0: POP3files:--/--/---- --:--:--] msgDriverControl :
[tcl :out :INFO/0: POP3files:--/--/---- --:--:--] msgRecordFormat :
[tcl :out :INFO/0: POP3files:--/--/---- --:--:--] msgRoutes :
[tcl :out :INFO/0: POP3files:--/--/---- --:--:--] msgUserData : {headers {{content-
type multipart/mixed\;\ \r\n\tboundary=\"----=_Part_0_15184882.1394487715184\"} {to drsmith@lo
calhost.com,\ drsmith@localhost.com} {subject test\ CAA-Direct\ message} {mime-version 1.0}
{message-id <15865423.2.1394487716825.JavaMail.jpangburn@USSPNJPANGBU01>} {received from\
127.0.0.1\ (HELO\ USSPNJPANGBU01.infor.com)\;\ Mon\ Mar\ 10\ 14:41:56\ PDT\ 2014} {from clover
leaf@localhost.com} {date Mon,\ 10\ Mar\ 2014\ 14:41:56\ -0700\ (PDT)} {return-path <cloverleaf@lo
calhost.com>}}} {generalInfo {{to drsmith@localhost.com,drsmith@localhost.com} {replyTo clover
leaf@localhost.com} {subject test\ CAA-Direct\ message} {sentDate Mon\ Mar\ 10\ 14:41:56\ PDT\
2014} {from cloverleaf@localhost.com} {cc {}}}} {attachments {{1 {{headers {{content-type appli
cation/octet-stream\;\ name=myattachment} {content-transfer-encoding 7bit} {content-disposition
 attachment\;\ filename=myattachment}}} {contentFile C:\\cloverleaf\\cis6.0\\integrator\\di
rect_samples\\javadriver\\inbound\\attachments\\CAAEmail2763823352417330571attachment}}} {0
{{headers {{content-type text/plain\;\ charset=us-ascii} {content-transfer-encoding 7bit}}}
{contentFile C:\\cloverleaf\\cis6.0\\integrator\\direct_samples\\javadriver\\inbound\\attach
ments\\CAAEmail3218073862942335862attachment}}}}}
[tcl :out :INFO/0: POP3files:--/--/---- --:--:--] msgStaticIsDirty : 0
[tcl :out :INFO/0: POP3files:--/--/---- --:--:--] msgVariableIsDirty: 0
[tcl :out :INFO/0: POP3files:--/--/---- --:--:--] msgTimeStartIb : 1394487828.830
[tcl :out :INFO/0: POP3files:--/--/---- --:--:--] msgTimeStartOb : 1394487828.853
[tcl :out :INFO/0: POP3files:--/--/---- --:--:--] msgTimeCurQueStart: 0.000
[tcl :out :INFO/0: POP3files:--/--/---- --:--:--] msgTimeTotalQue : 0.023

Infor Cloverleaf Application Adaptor Web Services User Guide | 186DRAFT

CAA-Direct logging

[tcl :out :INFO/0: POP3files:--/--/---- --:--:--] msgTimeRecovery : 1394487828.830
[tcl :out :INFO/0: POP3files:--/--/---- --:--:--] msgEoConfig : 0x00000000
[tcl :out :INFO/0: POP3files:--/--/---- --:--:--] msgData (BO) : 0x02AED928
[tcl :out :INFO/0: POP3files:--/--/---- --:--:--] message : '5632'

Note: Useful information includes all the metadata information available in USERDATA and the message itself.
This includes attachment file information.

CAA-Direct internal logging
For last line troubleshooting, CAA-Direct logs some information as it processes messages. In most cases, this
is completely unnecessary. If you suspect a bug or some fault lies with CAA-Direct or the underlying JavaMail
API, then enable the Java-based logging for these software packages. Then, you can see if it shows any
information about what is happening.

This sort of logging falls under the Java Util Logging domain. You can search the internet for information
about what sort of logging configurations are possible under Java Util Logging. You can also find examples
of turning on logging to a separate file, learning about log levels, and so on.

For an example, the inbound process in the direct_samples sample site has this enabled.

The Process Configuration dialog box uses this configuration on the Java Driver tab's User Defined Options
tab:

• Name: java.util.logging.config.file
For the process, you create a user-defined option with this name.

• Value: $SITEPATH/javadriver/logging.properties
The value is set to the location of your logging.properties file. The Java Driver $SITEPATH variable points
to the site directory. javadriver is the directory, and logging.properties is the sample file.

By default, at the end of this file is this relevant line:

com.infor.cloverleaf.direct_adapters.level = FINEST

This is an example in the process log from CAA-Direct:

Mar 10, 2014 2:43:46 PM com.infor.cloverleaf.direct_adapters.retriever.Retriever doTimeEvent
FINE: running doTimeEvent
Mar 10, 2014 2:43:46 PM com.infor.cloverleaf.direct_adapters.retriever.Retriever doTimeEvent
FINER: processing config 'pop3test'
Mar 10, 2014 2:43:46 PM com.infor.cloverleaf.direct_adapters.retriever.POP3RetrieverConfig get
Password
INFO: Encoded password is "c81=8a=>UT19eAon3c<MIAH:jbiXQI30", you can copy it to your config to
 protect it and set passwordEncoded to true.
Mar 10, 2014 2:43:46 PM com.infor.cloverleaf.direct_adapters.retriever.Retriever doTimeEvent
FINEST: password retrieved: true

These logs can occasionally be useful because they show when the doTimeEvent fires and then what happens
afterward. The doTimeEvent is the event that goes every so often and triggers the adapter to check for new
mail. Then it tells you which config entry it is processing. This is useful to separate other log entries if you
have multiple POP3 or IMAP config entries.

Infor Cloverleaf Application Adaptor Web Services User Guide | 187DRAFT

CAA-Direct logging

By default, it runs at INFO level, so you would always see the notice about the encoded version of the password.
With this, you can put that into the configuration tab instead of the plain text password. To get a lower level,
such as FINE, FINER, FINEST, set it by the logging.properties file.

If the level was turned up higher, for example, WARNING, then this would not show in the log.

Be careful with settings lower than INFO. These lower level kind of logs are not good in production. This is
because they may happen on every message and clutter the log. They are useful, though, in development to
verify such things as from which POP3 server was it retrieving messages when an error happened.

Infor Cloverleaf Application Adaptor Web Services User Guide | 188DRAFT

CAA-Direct logging

CAA-Direct known issues

The inbound side of attachment’s contentFile path is different from where it is saved.

On the inbound side, an attachment’s contentFile path in USERDATA is different from where the file is saved.

For example, below is the content of a sample site’s inbound USERDATA:

{contentFile c:\\cloverleaf\\cis6.1\\integrator\\direct_samples\\javadriver\\inbound\\attachments\\
CAAEmail1364030104935372339attachment}

The file is stored in:

C:\cloverleaf\cisversion\integrator\direct_samples\exec\processes\inbound\attachments\ CAAE
mail1364030104935372339attachment

This is due to a bug in the Cloverleaf Java Driver code.

Workaround

Extract the file name from the contentFile name/value pair in USERDATA and place it in the location where you
configured it to store the files.

The sample Tcl for "POP3" in CAA-Direct sample sites shows how to extract the file name.

Infor Cloverleaf Application Adaptor Web Services User Guide | 189DRAFT

CAA-Direct known issues

Log files and troubleshooting

The Bridge has its own log file system, configured at conf/log4j.xml. This is a standard log4j configuration
file. By default, it has appenders that:

• Clients can connect with to get log information.
• Writes everything to standard out.
• Writes everything to a rolling file appender at the installation root folder in a file bridge.log. This is the

first place to look for debugging at the Bridge level.
• Uses a custom appender that is aware of transactions to write to the bridge folder. It creates subfolders

named by RHIO which contain log files specific to the transactions in that RHIO. This granularity can be
helpful when debugging in a production environment with large standard out log files.

The log level for Bridge code is set to “debug” which means it outputs much debugging information for every
transaction. This is useful for debugging in development but can generate massive log files if used on a busy
production machine. The levels should be turned down to at least “info” for day-to-day production logging.

Additional webapps logging

These apps also use log4j logging which can be configured for each app. This is accomplished by going to
webapps/the app/WEB-INF/classes and editing the log4j.xml file and restarting Tomcat:

• InitiatingGateway

• QvdxADTListenerApp

• RegRepoCleanupApp

• RespondingGateway

The Repository Viewer app uses log4j, and is located at browser/Viewer/WEB-INF/classes.

The Registry/Repository writes most information to standard out and is not configurable.

Standard out

On Windows, most of the standard out logging goes to logs/catalina.*.log where * is the current date when
Tomcat was started.

On Linux, depending on how you start your script, the standard out can go to the console or the catalina log
files. This is the first place to look for non-Bridge problems.

Infor Cloverleaf Application Adaptor Web Services User Guide | 190DRAFT

Log files and troubleshooting

Frequently asked questions

Frequently asked questions include:

• What is the affinity domain universal ID?
• What fields are in the bridge submission for metadata map to the CodeType/@name in the registry's

codes.xml?
• What are the required fields in the HL7 v2 ADT feeds to the registry?

What is the affinity domain universal ID?

This is the assigning authority for allowable patients. This value tells the Registry to only accept patients
within this assigning authority. Outside patient submissions are ignored.

If the patient's universal ID is left blank on feed messages, then UniversalId is supplied and stored in the
Registry.

The ID is always stored without the NamespaceId portion. Document submissions and queries with a NamespaceId
are stripped.

<Parameter name="assigningAuthority.NamespaceId" value=""/>
<Parameter name="assigningAuthority.UniversalId" value="1.3.6.1.4.1.21367.2005.3.7"/>
<!-- UniversalIdType is always ISO -->

What fields are in the bridge submission for metadata map to the CodeType/@name in the registry's
codes.xml?

• documentEntryClassCode → classCode
• documentEntryConfidentialityCodes → confidentialityCode
• documentEntryEventCodes → eventCodeList
• documentEntryFormatCode → formatCode
• documentEntryHealthcareFacilityCode → healthcareFacilityTypeCode
• documentEntryPracticeSettingCode → practiceSettingCode
• documentEntryTypeCode → typeCode
• submissionSetContentTypeCode → contentTypeCode

codes.xml has an extra mimeType entry that is used by the Repository for setting the file name extension. This
happens when storing the document and setting the attachment content type to the right mimeType when
retrieving the document. As you’re only submitting CDA docs, leave this field as-is.

Infor Cloverleaf Application Adaptor Web Services User Guide | 191DRAFT

Frequently asked questions

What are the required fields in the HL7 v2 ADT feeds to the registry?

Infor uses these required fields:

messageType from MSH-9-1
triggerEvent from MSH-9-2
patientId from PID-3
patientName from PID-5
 from the repeats we use the following cells:
 Cell lastName = currentPatientName.getElement("1");
 Cell firstName = currentPatientName.getElement("2");
 Cell middleName = currentPatientName.getElement("3");
 Cell suffix = currentPatientName.getElement("4");
 Cell prefix = currentPatientName.getElement("5");
 Cell degree = currentPatientName.getElement("6");

These are not required fields, but are stored in the database if you pass them. They can be used by
administrators for manually auditing and error checking purposes :

patientAddress from PID-11
 from the repeats we use the following cells:
 Cell streetAddress = currentPatientAddress.getElement("1");
 Cell otherDesignation = currentPatientAddress.getElement("2");
 Cell city = currentPatientAddress.getElement("3");
 Cell stateOrProvince = currentPatientAddress.getElement("4");
 Cell zipcode = currentPatientAddress.getElement("5");
 Cell country = currentPatientAddress.getElement("6");
 Cell countryOrParish = currentPatientAddress.getElement("9");
patientRace from PID-10
 from repeats:
 Cell raceCode = currentPatientRace.getElement("1");
 Cell raceText = currentPatientRace.getElement("2");
birthday from PID-7
sex from PID-8
accountNumber from PID-18
bed from PV1-3-3

Infor Cloverleaf Application Adaptor Web Services User Guide | 192DRAFT

Frequently asked questions

Index

A
Add Jetty Engine dialog box 47
Add Raw Server dialog box 47
affinity domain universal ID 191
Apache CXF configuration guide 34
applicationContext_SignEncProvider.xml 96
asynchronous mode clients 30
asyncRawClientFile 94
asyncRegiClientFile 93
authentication type 80

B
BODs 35, 38
bounceRaw 93
bounceSOAPRegistry 91

C
CAA-Direct

logging options 184
caa-direct retriever/sender 34
caa-ws client/rawclient/server 35
callback classes 138
codes.xml 191
conduit configuration 78
configuration flow

alternate 86
basic 85
Raw client 87
raw HTTP server 88
RESTful client 86
RESTful server 88
SOAP client message 86
SOAP client payload 86
SOAP server message 87
SOAP server payload 87

configuration objects 70
contentFile 189
CXF

configuration interface 15
CXF options 97

D
direct-retriever 34
direct-sender 34
dispatch name 90
dispatcher 15
dumpMsg 93, 96

E
engine

creating 47

F
FHIR BOX 98
FHIR examples BOX 103
FHIR schemas 111
FHIR test servers 111
FHIR_example.box 98
fields

client inbound 25
override 15
provider inbound 18

H
HL7 FHIR 102
HL7 message sample 105
HL7 v2 ADT 191

I
Include operation 112–113
ion retriever 36
ion sender 39

J
java/ion-retriever protocol 35
java/ion-sender protocol 38
jaxws:client 138
jaxws:server 138
JCE policy files 126
jetty 12, 142
JKS keystore 84

L
logging

mail debug 184
standard out 190
webapps 190

logical items
client 48
server 57

M
MerlinWrapper 135

Infor Cloverleaf Application Adaptor Web Services User Guide | 193DRAFT

Index

message validation 62
messages

inbound 15, 17
outbound 15, 17
SOAP 91

N
new conduit

creating 45
nodes

ws-client/ws-server 73

O
outInterceptors 96
overrides

client 63
client outbound 20
provider outbound 28
server 66

P
Policy Generation tab 137
Portecle

installing 182
launching 182

Portecle open source 182
portecle.jar 126
provider inbound fields 17
public key infrastructure 125

R
raw client

asynchronous 94
raw server

creating 47
RAW server 69
RawClient 94
rawClientFile 94
RawHandler 93
RegistryClient 92
registryClientFile 92
registryFileClient 92
registryQuery.50.xml 93
requests

basic 90
REST

XML data 69
REST Consumer 70
REST endpoint 93
rest server

dummy 48
retrieve interval 36

S
sample client

creating 44
sample server

creating 46
sample sites

CAA-WS 89
security settings 83
security testing 83
Server.java 96
sign_enc sample 96
soap client

asynchronous 93
SOAP client 86
SOAP Consumer

creating 71
SOAP envelope 86
SOAP messages 69
SOAPProvider_Registry 91, 128
SOAPProvider_Registry thread 128
SOAPProviderPayload_Registry 92

T
Tcl keyed list 17
tcl overrides 30
Tcl user interface 15
test button 83

U
updateRawClientMessage 94
URL

endpoint 47
Use Transport Security option 137
USERDATA

overrides 17
users

normal 85
power 85

V
validation 83

W
web service server/client 12
web services

multiple 122
webclient factory 78
wizard

web services consumer 69
ws_more_samples 95
WS-addressing 92
ws-client 35

Infor Cloverleaf Application Adaptor Web Services User Guide | 194DRAFT

Index

ws-rawclient 35
ws-samples site 89
WS-Security parameters

non-boolean 133
WS-Security tags

boolean 132
ws-security.callback-handler 136
ws-server 35, 71
WSDL file

selecting as input file 72
WSDL location 128
WSDL2XSD 120
WSS4J options 97

WSS4JInInterceptor 96

X
xsd 76
XSD file

selecting as input file 73
XSD WSDL files 72
XSDs

multiple 122
xsdWsdlToolClientGUI.bat 120
xsdWsdlToolGUI.bat 124

Infor Cloverleaf Application Adaptor Web Services User Guide | 195DRAFT

Index

	Contents
	Contacting Infor
	CAA-WS
	Architecture and flow
	Web Client working modes

	API
	Override fields
	Field modes: SOAP/REST/Raw
	CAA-WS USERDATA for getting information and setting overrides
	USERDATA format
	Provider inbound information
	Client outbound overrides
	Client inbound information
	Provider outbound overrides

	Open Java API

	Local Binding
	CAA-WS IDE properties GUI
	CAA-Direct Retriever and CAA-Direct Sender
	CAA-WS Client, CAA-WS RawClient and CAA-WS Server
	ION Retriever
	ION Retriever dialog box

	ION Sender
	ION Sender dialog box

	Conduit
	TLS Secured on the conduit

	CAA-WS auto-creation of JKS for HTTPS
	Creating a sample client
	Creating a new conduit
	Bus
	Creating a sample server
	Logical view

	Creating an engine
	Server IP addresses
	Creating a RAW server
	Placeholder REST server

	Logical client items and their fields
	Logical server items and their fields
	Message validation check mode
	Client overrides
	Server overrides

	Web Services consumer wizard
	SOAP, REST and RAW basics
	User interface
	Building a SOAP Consumer
	XSD WSDL tool
	Selecting a WSDL file as input file
	Selecting an XSD file as input file

	WS-Client and WS-Server nodes
	WS-Client conduit configuration
	Conduit
	WS-Client SOAP Consumer configuration
	WS-Client REST Consumer configuration
	WS-RawClient wizard flow

	SPNEGO
	Scheduler node
	Web Services security
	User interface
	Testing
	Certificate manager
	Web services security use case

	Usage scenario
	Intended users
	Basic flow
	Alternate flow: Normal users
	Web Service SOAP client: payload
	Web Service SOAP client: message
	Web Service RESTful client
	Web Service Raw client
	Web Service SOAP server: payload
	Web Service SOAP server: message
	Web Service RESTful server
	Web Service Raw server

	CAA-WS sample sites
	REST
	SOAP
	SOAP Provider (MESSAGE mode)
	Editing WS-Addressing
	SOAP Provider (PAYLOAD mode)

	SOAP Client
	Asynchronous SOAP Client
	Raw
	Provider (Handler)
	Raw Client

	Asynchronous RAW Client
	ws_more_samples
	ws_adv_samples
	Signing/Encryption
	Understanding the CXF/WSS4J Options
	FHIR
	oauth2_sample

	HL7 FHIR requirements and tools
	Deploying Cloverleaf FHIR examples BOX
	Cloverleaf BOX contents
	Running examples
	Running the FHIR patient create/update interface
	Running the FHIR transaction bundle interface

	Public FHIR test servers and this BOX
	Updating FHIR schemas
	Cloverleaf 6.2 translation Include operation
	Using the Include operation

	Creating an HTTP outbound web service client thread

	CAA-WS Swagger
	Raw Consumer configuration
	OAuth2 client on the Conduit panel

	XSD WSDL tool: Client
	Usage scenario: Accessing a web service in the system
	Client: Setting up single runs
	Running XSD WSDL tool: Client version by command line
	Running the XSD WSDL tool: Client by GUI

	XSD WSDL tool: Server
	Usage scenario: Creating a web service with the XSD WSDL tool
	Server: Setting up single runs
	Running the XSD WSDL tool: Server from command line
	Running the XSD WSDL tool: Server from GUI

	Portecle keystore management tool (third-party)
	Java
	Portecle open source GUI
	Portecle installation
	Launching Portecle

	WS-Policy
	Modifying the WSDL
	Using the new WSDL
	Providing valid usernames for server and select username for client
	Java driver bug
	Starting and testing threads
	Policy files
	Running fail test
	jaxws:client and jaxws:server configuration properties
	User properties
	Callback class and crypto properties
	Boolean WS-Security configuration tags
	Non-boolean WS-Security configuration parameters

	Encryption/signature class files
	Callback classes
	User interface for configuration and policy generation
	Policy properties

	USERDATA overrides

	CAA-WS logging
	Inbound/Outbound message logging
	Cloverleaf message dump
	CAA-WS internal logging
	Output example

	Enable Jetty access log

	Updating CAA-WS 1.x sites to 2.0 and later
	Migrating IHB threads to CAA-WS
	Differences between IBMIME and CAA-WS messages
	WSDL files
	Server URLs
	Configuration files
	WS-Security
	Server thread example
	WSDL folder and server URLs
	Removing Tcl procedures and changing routing values
	Converting to CAA-WS server thread
	Testing the changes

	CAA-Direct
	CAA-Direct architecture and flow
	POP3/IMAP email retrieval usage
	SMTP email sending usage

	CAA-Direct Application Programming Interface (API)
	CAA-Direct USERDATA for getting information and setting overrides
	SMTP versus POP3 and IMAP
	POP3/IMAP inbound information
	SMTP outbound overrides

	CAA-Direct IDE Properties GUI
	Creating a sample sender
	Sender object's sample site "GreenMailServer" test server
	Sender's logical view
	Additional sender configuration items

	Creating a sample retriever
	Retriever object's sample site GreenMailServer test server
	Retriever's logical view
	Additional retriever configuration items

	Logical items and their fields

	CAA-Direct usage scenario
	Simple Message Sender
	Message Sender with an attachment
	Simple message retriever
	Message retriever for an attachment

	CAA-Direct sample sites
	SMTP
	SMTPS
	POP3
	POP3S
	IMAPS

	CAA-Direct Portecle Keystore Management tool (third-party)
	CAA-Direct logging
	Mail server conversation logging
	Cloverleaf message dump
	CAA-Direct internal logging

	CAA-Direct known issues
	Log files and troubleshooting
	Frequently asked questions
	Index
	A
	B
	C
	D
	E
	F
	H
	I
	J
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X

